We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Non-Invasive Blood Test Enables Prenatal Genetic Screening for Fetal Conditions

By LabMedica International staff writers
Posted on 27 Nov 2023
Print article
Image: Researchers have developed new method for prenatal genetic testing (Photo courtesy of 123RF)
Image: Researchers have developed new method for prenatal genetic testing (Photo courtesy of 123RF)

Non-invasive prenatal testing (NIPT), which is also known as prenatal-cell-free DNA screening, refers to a blood test for pregnant individuals to screen for significant chromosomal changes like an extra chromosome 21 (Down syndrome), other chromosomal gains or losses, and the number of sex chromosomes. But for many prenatal genetic diagnoses, identifying individual nucleotide changes across the protein-coding sequence of the genome, known as the ‘exome’ is essential. Currently, exome screening requires invasive procedures like amniocentesis, which are costly and pose risks to both mother and fetus. Now, a non-invasive genetic test can screen the blood of pregnant individuals to survey all genes for fetal DNA sequence variants.

Developed by researchers at Massachusetts General Hospital (MGH, Boston, MA, USA), this new test uses a method termed non-invasive fetal sequencing (NIFS) to discover and interpret variants across the fetal exome from DNA circulating in the mother’s blood. The high-resolution NIFS approach method enables researchers to survey the exome, identify sequence changes, and distinguish potentially pathogenic variants from possibly benign variants inherited from the mother. The effectiveness of this test was demonstrated by the researchers through a blood sample analysis from 51 pregnant individuals. Using NIFS, maternal blood draw alone was sufficient, eliminating the need for additional genetic tests on either parent. The test managed to capture variants that were inherited from the mother as well as new variants that were not present in the mother and associated with prenatal diagnoses.

The test showed high sensitivity in identifying single-base DNA alterations and small insertions or deletions present in the fetal genome but absent in the maternal genome. This was consistent regardless of the fetal DNA amount detected. In 14 cases that underwent standard genetic testing, NIFS successfully detected all clinically relevant variants found in invasive testing. Although initially tested on 51 pregnancies, the potential for wider application exists. The research team is collaborating to broaden and validate these findings and enhance the methodology. It's crucial to note that this test isn't yet a clinical standard and requires further validation in larger samples. As research progresses, the team is also considering the best ways to support patients in navigating testing options and test results during pregnancy.

“Our study suggests that it is feasible to screen most genes across the fetal genome using a blood test rather than requiring an invasive procedure such as amniocentesis,” said senior author Michael E. Talkowski, PhD. “It has long been known that fetal sequence variants can be obtained from cell-free fetal DNA, and exome sequencing is already part of the standard-of-care, but it currently requires an invasive procedure.”

Related Links:
Massachusetts General Hospital 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: The mass spectrometer can detect different structures of the sugar molecules, called glycans, in cells (Photo courtesy of Lundbergs forskningsstiftelse/Magnus Gotander)

AI Model Detects Cancer at Lightning Speed through Sugar Analyses

Glycans, which are structures made up of sugar molecules within cells, can be analyzed using mass spectrometry. This technique is particularly useful because these sugar structures can reveal the presence... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Pathology

view channel
Image: The new test helps differentiate a B-cell cancer from a normal, reactive immune response (Photo courtesy of Roche)

New Highly-Sensitive Test to Help More Easily Diagnose B-Cell Lymphoma

B-cell lymphoma, a cancer primarily originating in the lymphatic system, represents about 85% of non-Hodgkin lymphoma (NHL) diagnoses. NHL ranks as the tenth most prevalent cancer globally, claiming over... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.