We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Non-Invasive Blood Test Enables Prenatal Genetic Screening for Fetal Conditions

By LabMedica International staff writers
Posted on 27 Nov 2023
Print article
Image: Researchers have developed new method for prenatal genetic testing (Photo courtesy of 123RF)
Image: Researchers have developed new method for prenatal genetic testing (Photo courtesy of 123RF)

Non-invasive prenatal testing (NIPT), which is also known as prenatal-cell-free DNA screening, refers to a blood test for pregnant individuals to screen for significant chromosomal changes like an extra chromosome 21 (Down syndrome), other chromosomal gains or losses, and the number of sex chromosomes. But for many prenatal genetic diagnoses, identifying individual nucleotide changes across the protein-coding sequence of the genome, known as the ‘exome’ is essential. Currently, exome screening requires invasive procedures like amniocentesis, which are costly and pose risks to both mother and fetus. Now, a non-invasive genetic test can screen the blood of pregnant individuals to survey all genes for fetal DNA sequence variants.

Developed by researchers at Massachusetts General Hospital (MGH, Boston, MA, USA), this new test uses a method termed non-invasive fetal sequencing (NIFS) to discover and interpret variants across the fetal exome from DNA circulating in the mother’s blood. The high-resolution NIFS approach method enables researchers to survey the exome, identify sequence changes, and distinguish potentially pathogenic variants from possibly benign variants inherited from the mother. The effectiveness of this test was demonstrated by the researchers through a blood sample analysis from 51 pregnant individuals. Using NIFS, maternal blood draw alone was sufficient, eliminating the need for additional genetic tests on either parent. The test managed to capture variants that were inherited from the mother as well as new variants that were not present in the mother and associated with prenatal diagnoses.

The test showed high sensitivity in identifying single-base DNA alterations and small insertions or deletions present in the fetal genome but absent in the maternal genome. This was consistent regardless of the fetal DNA amount detected. In 14 cases that underwent standard genetic testing, NIFS successfully detected all clinically relevant variants found in invasive testing. Although initially tested on 51 pregnancies, the potential for wider application exists. The research team is collaborating to broaden and validate these findings and enhance the methodology. It's crucial to note that this test isn't yet a clinical standard and requires further validation in larger samples. As research progresses, the team is also considering the best ways to support patients in navigating testing options and test results during pregnancy.

“Our study suggests that it is feasible to screen most genes across the fetal genome using a blood test rather than requiring an invasive procedure such as amniocentesis,” said senior author Michael E. Talkowski, PhD. “It has long been known that fetal sequence variants can be obtained from cell-free fetal DNA, and exome sequencing is already part of the standard-of-care, but it currently requires an invasive procedure.”

Related Links:
Massachusetts General Hospital 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.