We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Ultrasensitive Assay Predicts Hodgkin Lymphoma Recurrence and Splits Disease into Two Subgroups

By LabMedica International staff writers
Posted on 12 Dec 2023
Print article
Image: Hodgkin lymphoma prognosis and biology can be tracked with circulating tumor DNA (Photo courtesy of 123RF)
Image: Hodgkin lymphoma prognosis and biology can be tracked with circulating tumor DNA (Photo courtesy of 123RF)

Hodgkin lymphoma, a type of cancer affecting lymph nodes, predominantly impacts individuals aged 15 to 35 and those over 55. The genetic roots of this cancer have been elusive, partly due to the predominance of infiltrating immune cells within the tumors, complicating the isolation of cancerous cells for analysis. Despite this, current treatments involving chemotherapy, radiation, or both have led to a survival rate of about 89% for five years or more post-diagnosis. Now, a comprehensive international study examining a large number of patient samples has demonstrated that the levels of circulating tumor DNA in the blood can indicate patients' responsiveness to treatment and predict possible disease recurrence. This breakthrough suggests that some patients with favorable prognoses might be able to reduce their treatment duration. The study has also unexpectedly classified Hodgkin lymphoma into two distinct groups, each characterized by unique genetic alterations and slightly differing prognoses, pointing to potential vulnerabilities in cancer that could be targeted by newer, less harmful treatments.

This research, led by Stanford Medicine (Stanford, CA, USA), employed two advanced DNA sequencing methods, CAPP-Seq and PhasED-Seq, to analyze blood samples from 366 individuals treated for Hodgkin lymphoma. These methods proved highly sensitive in detecting the cancer's genetic changes. Additionally, by applying machine learning, the researchers categorized the genetic alterations in the cancer cells, identifying two primary groups. The first group, comprising about half to two-thirds of patients, mostly younger, exhibited mutations in several genes related to cell survival, growth, and inflammation and had a more favorable prognosis, with 85-90% surviving three years without disease recurrence.

The second group, representing about half to one-third of patients and including both younger and older individuals, showed genetic changes known as copy number alterations that influence larger genome sections, resulting in a slightly less favorable outcome. Approximately 75% of these patients survived three years without recurrence. Interestingly, both groups included a subset of patients with a unique mutation in the gene for the interleukin 4 and interleukin 13 receptors. The study further revealed that patients with undetectable circulating tumor DNA levels in their blood shortly after starting treatment had a significantly lower likelihood of disease recurrence compared to those with residual circulating cancer DNA at the same time point.

“This approach offers our first significant look at the genetics of classical Hodgkin lymphoma,” said Professor of medicine Ash Alizadeh, MD, PhD. “Surprisingly, we detected more cancer DNA in the blood than in the cancer tissue itself. That seemed hard to believe until we had analyzed enough samples to show that it was reproducible.”

Related Links:
Stanford Medicine

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
All-in-one Molecular Diagnosis System
Panall 8000

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: The mass spectrometer can detect different structures of the sugar molecules, called glycans, in cells (Photo courtesy of Lundbergs forskningsstiftelse/Magnus Gotander)

AI Model Detects Cancer at Lightning Speed through Sugar Analyses

Glycans, which are structures made up of sugar molecules within cells, can be analyzed using mass spectrometry. This technique is particularly useful because these sugar structures can reveal the presence... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Pathology

view channel
Image: The new test helps differentiate a B-cell cancer from a normal, reactive immune response (Photo courtesy of Roche)

New Highly-Sensitive Test to Help More Easily Diagnose B-Cell Lymphoma

B-cell lymphoma, a cancer primarily originating in the lymphatic system, represents about 85% of non-Hodgkin lymphoma (NHL) diagnoses. NHL ranks as the tenth most prevalent cancer globally, claiming over... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.