We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Developed to Catch Pancreatic Cancer Early

By LabMedica International staff writers
Posted on 08 Sep 2015
Print article
Image: The nCounter Analysis System (Photo courtesy of NanoString Technologies).
Image: The nCounter Analysis System (Photo courtesy of NanoString Technologies).
Pancreatic cancer is the fourth most common cause of cancer-related death in the USA and has a five-year survival rate of only 6%, which is the lowest rate of all types of cancer and this low survival rate is partially attributed to the difficulty in detecting pancreatic cancer at an early stage.

Pancreatic cancer survival rates can be improved by identifying markers in the blood that can pinpoint patients with premalignant pancreatic lesions called intraductal papillary mucinous neoplasms (IPMNs), which can be characterized as either low- or high-risk for the development of pancreatic cancer.

Scientists at the Moffitt Cancer Center (Tampa, FL, USA) and their colleagues developed a fast, cost-effective blood test by studying micro ribonucleic acids (miRNAs), a class of small molecules that regulate key genes involved in the development and progression of cancer. The test can accurately differentiate low-risk IPMNs that can be monitored from high-risk IPMNs that need to be surgically removed. The team measured the abundance of miRNAs in archived preoperative plasma from individuals with pathologically confirmed IPMNs and healthy controls and discovers plasma miRNAs that distinguish between IPMN patients and controls and between “malignant” and “benign” IPMNs.

The scientists used novel nCounter technology (Nanostring Technology, Seattle, WA, USA) to evaluate 800 miRNAs, and showed that a 30-miRNA signature distinguished 42 IPMN cases from 24 controls. The nCounter Analysis System utilizes a novel digital color-coded barcode technology that is based on direct multiplexed measurement of gene expression and offers high levels of precision and sensitivity at less than one copy per cell. The technology uses molecular "barcodes" and single molecule imaging to detect and count hundreds of unique transcripts in a single reaction.

The signature contained novel miRNAs and miRNAs previously implicated in pancreatic carcinogenesis that had two- to four-fold higher expression in cases than controls. They also generated a five-miRNA signature that discriminated between 21malignant, high-grade dysplasia and invasive carcinoma, and 21 benign low- and moderate-grade dysplasia IPMNs, and showed that paired plasma and tissue samples from patients with IPMNs can have distinct miRNA expression profiles.

Jennifer Permuth-Wey, PhD, the first author of the study, said, “IPMNs are established precursor lesions to pancreatic cancer that account for approximately half of all asymptomatic pancreatic cysts incidentally detected by computerized tomography (CT) scans or magnetic resonance imaging (MRI) in the USA each year. The hope is that in the not-so-distant future a miRNA-based blood test can be used in conjunction with imaging features and other factors to aid the medical team in accurately predicting disease severity of IPMNs and other pancreatic cysts at the time of diagnosis or follow-up so that more informed personalized medical management decisions can be made.” The study was published on August 27, 2015, in the journal Cancer Prevention Research.

Related Links:

Moffitt Cancer Center 
Nanostring Technology


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.