We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Blood Vessels Grown in Lab to Treat Heart Disease

By LabMedica International staff writers
Posted on 02 Sep 2009
Print article
Although open-heart surgery is a frequent treatment for heart disease, it remains a very dangerous procedure. New research from Israel has shown the potential for an injected protein to regrow blood vessels in the human heart--eliminating the need for risky surgery altogether.

In heart disease, either blood vessels are clogged or they die off, starving the heart of oxygen and leaving it highly susceptible to a cardiac attack. Dr. Britta Hardy and her research partner Prof. Alexander Battler, from Tel Aviv University's Sackler School of Medicine (Israel) have developed a protein-based injection that when delivered to muscles in the body, spurs the growth of tiny blood vessels. These new vessels in the heart could give millions of people worldwide a new lease on life.

An article on the procedure was published in the August 10, 2009, issue of the journal Biochemical Pharmacology. "The biotechnology behind our human-based protein therapy is very complicated, but the goal is simple and the solution is straightforward,” stated Dr. Hardy. "We intend to inject our drug locally to heal any oxygen-starved tissue. So far, in animal models, we have seen no side effects and no inflammation following our injection of the drug into the legs. The growth of new blood vessels happens within a few weeks, showing improved blood circulation.”

The protein solution can also be added as a coating to a stent. Currently, the implantation of a stent is accompanied by a high risk for blood clots, which necessitates the use of blood thinners. "We could coat a stent with our peptide, attracting endothelial stem cells to form a film on the surface of the stent,” Dr. Hardy explained. "These endothelial cells on the stent would eliminate the need for taking the blood thinners that prevent blood clots from forming.”

If investment goals are met, Dr. Hardy anticipates toxicity studies and phase I trials could be complete within two years. The research began with the hope of preventing leg amputations, positing that proteins from the human body could be used to trigger the growth of new blood vessels. Dr. Hardy started by studying a library of peptides and testing them in the laboratory. Dr. Hardy was able to validate initial results. She then took some of the isolated and synthesized peptides and tested them in diabetic mice whose legs were in the process of dying.

Although diabetes is known to decrease blood circulation, Dr. Hardy found that her therapy reversed the decrease. "Within a short time we saw the formation of capillaries and tiny blood vessels. After three weeks, they had grown and merged together with the rest of the circulatory system,” she commented. In mice with limited blood circulation, she was able to completely restore blood vessels and save their legs. The next step is examining the applicability of the research to cardiac patients.

A new therapy could be commercially available soon. Unlike studies for other drugs, clinical results with the blood vessels are nearly immediate. "It's pretty obvious if there is regrowth or not. Our technology promises to regrow blood vessels like a net, and a heart that grows more blood vessels becomes stronger. It's now imaginable that, in the distant future, peptide injections may be able to replace bypass surgeries,” Dr. Hardy concluded.

Related Links:

Tel Aviv University's Sackler School of Medicine



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.