Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Develop Technique that Stabilizes Antibodies

By LabMedica International staff writers
Posted on 22 Sep 2009
U.S. More...
government researchers have developed a systematic method to improve the stability of antibodies. The technique could lead to better biosensors, disease therapeutics, and diagnostic reagents and nonlaboratory applications, including environmental remediation.

Antibodies are proteins produced by humans and animals to defend against infections; they are also used to diagnose and treat some diseases and detect toxins and pathogens. "The primary issues with antibodies is that they are fragile and short-lived outside of cooler temperature-controlled environments, making their usefulness usually limited to laboratory applications," said senior biophysicist Dr. Fred Stevens, the project's lead investigator, from the U.S. Department of Energy's Argonne National Laboratory (Argonne, IL, USA).

Specifically, "stabilized antibodies, with full functionality, could be used in diagnostic and detection kits that can survive in less than optimal environments and be stockpiled for years at a time," Dr. Stevens said. "They could be used to combat diseases like cancer. They can also be used as the basis for biosensors that can continuously detect for pathogens like botulinum, ricin, and anthrax in places such as airports and subway stations--locations where it is not currently possible to provide ongoing detection of pathogens because antibodies cannot tolerate the environmental conditions."

Argonne has provided funding toward Dr. Stevens' research. Earlier research funded by the U.S. National Institutes of Health (Bethesda, MD, USA) revealed that it was possible to stabilize antibodies after a team led by Dr. Stevens unexpectedly discovered that natural antibodies contain stabilizing amino acid replacements.

Antibodies are comprised of four polypeptides--two light chains and two heavy chains. These chains are made up of modules known as constant and variable domains. The light and heavy chain each has a variable domain, which come together to form the antigen-binding site. Because of the great diversity of amino acids in the variable domains, different antibodies are capable of interacting with an effectively unlimited number of targets.

Sometimes this variability comes at a price; the amyloid-forming light chains were less stable than their normal counterparts. However, even amyloid-forming light chains have amino acid substitutions that improve stability. When seven of these amino acid alterations were introduced into an amyloid-forming variable domain, a billion-fold improvement in thermodynamic stability was obtained reflecting a much higher ratio of native protein folds to unfolded proteins--a major determinate of antibody shelf life.

"Our work at this detailed level has taught us that antibody stabilization was possible, but we needed to find out if antibodies could be stabilized without compromising their function and do so with moderate experimental investment," Dr. Stevens said. Recent studies suggest these goals are potentially achievable. To proactively improve the stability of a different antibody variable domain, Argonne researchers drew up a short list of 11 candidate amino acid changes. Four of the amino acid changes improved antibody stability and when combined together in the original domain provided a 2,000-fold improvement in stability.

A follow-up experiment using a functional antibody fragment was able to improve antibody stability comparably, with no loss of antibody functionality. Both experiments required approximately one month to accomplish instead of the potentially open-ended time required for most protein stabilization projects.

There is a correlation between thermodynamic stability and thermal stability, the billion-fold improvement in thermodynamic stability increased the thermal resistance of the protein to heating, resulting in a "melting temperature" of approximately 71 ºC. "However, still unanswered is whether it is possible to be confident about improving the stability of any antibody generated against a particular target," Dr. Stevens said. "Our research indicates that stabilization of antibodies is possible. We project that it could be possible to generate the data to guide stabilization of every future antibody in the near future."

Argonne's Office of Technology Transfer is actively seeking participation from industry for licensing as well as funding for further development of this technology. The U.S.'s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline.

Related Links:

Argonne National Laboratory



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.