We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA-Based Tool Designed to Map Wiring of Whole Brain

By LabMedica International staff writers
Posted on 05 Nov 2012
Print article
Image: Neuroscientists propose revolutionary DNA-based approach to map wiring of whole brain (Photo courtesy of Cold Spring Harbor Laboratory).
Image: Neuroscientists propose revolutionary DNA-based approach to map wiring of whole brain (Photo courtesy of Cold Spring Harbor Laboratory).
A new and possibly groundbreaking way of obtaining a neuronal connectivity map (or the connectome) of the whole brain of the mouse is now in the planning stages.

A report on the technology was published October 23, 2012, in the open-access journal PLOS Biology. The investigators, led by Prof. Anthony Zador, PhD, of Cold Spring Harbor Laboratory (Cold Spring Harbor, NY, USA), have an objective of providing a detailed map of neural connectivity. Currently, the only way of getting this information with high precision involves studying individual synapses in electron microscopes. However, such methods are slow, labor-intensive, and expensive.

Prof. Zador and colleagues instead propose to tap high-throughput DNA sequencing technology to explore the connectivity of neural circuits at the resolution of single neurons. “Our method renders the connectivity problem in a format in which the data are readable by currently available high-throughput genome sequencing machines,” said Prof. Zador. “We propose to do this via a process we’re now developing, called BOINC [barcoding of individual neuronal connections].”

The approach comes at a time when a number of scientists in the United States are advancing in the technology of mapping connections in the mammalian brain. These efforts use injections of tracer dyes or viruses to map neuronal connectivity at a “mesoscopic” level--a mid-range resolution that makes it possible to follow neural fibers between brain regions. Other groups are developing approaches based on electron microscopy.

The investigators are trying to trace connectivity further than the mesoscopic, at the scale of synaptic contacts between pairs of individual neurons, throughout the brain. The BOINC barcoding technique, now undergoing proof-of-concept testing, will be able, according to Prof. Zador, “to provide immediate insight into the computations that a circuit performs.”

Most neural computations are not currently understood at this level of precision, most because detailed circuit data are not yet available for mammals. The BOINC technology has the potential to be much more rapid and less expensive than applications based on electron microscopy.

The BOINC method comprises three steps: First, each neuron is labeled with a specific DNA barcode. A barcode consisting of just 20 random DNA “letters” can distinctively label a trillion neurons--many more than exist in the mouse brain. The second step looks at neurons that are synaptically connected, and links their particular barcodes with one other. One way to do this is by exploiting a virus such as the pseudorabies virus, which can move genetic matter across synapses. “To share barcodes across synapses, the virus must be engineered to carry the barcode within its own genetic sequence,” explained Dr. Zador. “After the virus spreads across synapses, each neuron effectively ends up as a bag of barcodes, comprising its own code and those from synaptically coupled partners.”

The third step of the BOINC method involves joining barcodes from synaptically connected neurons to make individual pieces of DNA, which can then be read by way existing high-throughput DNA sequencing techniques. These double-barcode sequences can then be assessed computationally to reveal the synaptic wiring diagram of the brain. Combined, reported Prof. Zador, if BOINC is effective in its current proof-of-concept testing, it will offer a drastically inexpensive and fast way of building a connectome, even of the complicated brain circuitry of mammals.

Related Links:

Cold Spring Harbor Laboratory



New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.