Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA-Based Tool Designed to Map Wiring of Whole Brain

By LabMedica International staff writers
Posted on 05 Nov 2012
A new and possibly groundbreaking way of obtaining a neuronal connectivity map (or the connectome) of the whole brain of the mouse is now in the planning stages. More...


A report on the technology was published October 23, 2012, in the open-access journal PLOS Biology. The investigators, led by Prof. Anthony Zador, PhD, of Cold Spring Harbor Laboratory (Cold Spring Harbor, NY, USA), have an objective of providing a detailed map of neural connectivity. Currently, the only way of getting this information with high precision involves studying individual synapses in electron microscopes. However, such methods are slow, labor-intensive, and expensive.

Prof. Zador and colleagues instead propose to tap high-throughput DNA sequencing technology to explore the connectivity of neural circuits at the resolution of single neurons. “Our method renders the connectivity problem in a format in which the data are readable by currently available high-throughput genome sequencing machines,” said Prof. Zador. “We propose to do this via a process we’re now developing, called BOINC [barcoding of individual neuronal connections].”

The approach comes at a time when a number of scientists in the United States are advancing in the technology of mapping connections in the mammalian brain. These efforts use injections of tracer dyes or viruses to map neuronal connectivity at a “mesoscopic” level--a mid-range resolution that makes it possible to follow neural fibers between brain regions. Other groups are developing approaches based on electron microscopy.

The investigators are trying to trace connectivity further than the mesoscopic, at the scale of synaptic contacts between pairs of individual neurons, throughout the brain. The BOINC barcoding technique, now undergoing proof-of-concept testing, will be able, according to Prof. Zador, “to provide immediate insight into the computations that a circuit performs.”

Most neural computations are not currently understood at this level of precision, most because detailed circuit data are not yet available for mammals. The BOINC technology has the potential to be much more rapid and less expensive than applications based on electron microscopy.

The BOINC method comprises three steps: First, each neuron is labeled with a specific DNA barcode. A barcode consisting of just 20 random DNA “letters” can distinctively label a trillion neurons--many more than exist in the mouse brain. The second step looks at neurons that are synaptically connected, and links their particular barcodes with one other. One way to do this is by exploiting a virus such as the pseudorabies virus, which can move genetic matter across synapses. “To share barcodes across synapses, the virus must be engineered to carry the barcode within its own genetic sequence,” explained Dr. Zador. “After the virus spreads across synapses, each neuron effectively ends up as a bag of barcodes, comprising its own code and those from synaptically coupled partners.”

The third step of the BOINC method involves joining barcodes from synaptically connected neurons to make individual pieces of DNA, which can then be read by way existing high-throughput DNA sequencing techniques. These double-barcode sequences can then be assessed computationally to reveal the synaptic wiring diagram of the brain. Combined, reported Prof. Zador, if BOINC is effective in its current proof-of-concept testing, it will offer a drastically inexpensive and fast way of building a connectome, even of the complicated brain circuitry of mammals.

Related Links:

Cold Spring Harbor Laboratory




New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.