We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Picosecond Ultrasonics Probe Human Cells

By LabMedica International staff writers
Posted on 13 Feb 2013
Print article
French researchers have employed high-frequency sound waves to examine the viscosity and stiffness of the nuclei of individual human cells. The scientists foresee that the probe could ultimately help resolve questions such as how cells bind to medical implants and why healthy cells become cancerous.

“We have developed a new noncontact, noninvasive tool to measure the mechanical properties of cells at the sub-cell scale,” stated Bertrand Audoin, a professor in the mechanics laboratory at the University of Bordeaux (France). “This can be useful to follow cell activity or identify cell disease.” The research was presented at the 57th annual meeting of the Biophysical Society (BPS), held February 2-6, 2013, in Philadelphia (PA, USA).

The technology that was used, called picosecond ultrasonics, was first applied in the electronics industry in the mid-1980s as a way to gauge the thickness of semiconductor chip layers. Prof. Audoin and his colleagues, in collaboration with a research group in biomaterials led by Marie-Christine Durrieu from the Institute of Chemistry & Biology of Membranes & Nano-objects at Bordeaux University, modified picosecond ultrasonics to research living cells. They grew cells on a metal plate and then flashed the cell-metal interface with an ultra-short laser pulse to generate high-frequency sound waves. Another laser measured how the sound pulse propagated through the cells, providing the investigators with insights into the mechanical characteristics of the individual cell components.

“The higher the frequency of sound you create, the smaller the wavelength, which means the smaller the objects you can probe,” stated Prof. Audoin. “We use gigahertz waves, so we can probe objects on the order of a hundred nanometers.” For comparison, a cell’s nucleus is about 10,000-nm wide.

The scientists faced hurdles in applying picosecond ultrasonics to study biologic systems. One challenge was the fluid-like substance characteristics of the cell. “The light scattering process we use to detect the mechanical properties of the cell is much weaker than for solids,” said Prof. Audoin. “We had to improve the signal to noise ratio without using a high-powered laser that would damage the cell.” The scientists also faced the challenge of natural cell variation. “If you probe silicon, you do it once, and it’s finished,” noted Prof. Audoin. “If you probe the nucleus you have to do it hundreds of times and look at the statistics.”

The investigators developed techniques to overcome these challenges by testing their techniques on polymer capsules and plant cells before moving on to human cells. In the coming years, the team envisions studying cancer cells with sound. “A cancerous tissue is stiffer than a healthy tissue,” noted Prof. Audoin. “If you can measure the rigidity of the cells while you provide different drugs, you can test if you are able to stop the cancer at the cell scale.”

Related Links:
University of Bordeaux

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.