We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pathogens Remove Myristic Acid from Immune Cell Signaling Proteins

By LabMedica International staff writers
Posted on 15 Apr 2013
Print article
Image: Shigella flexneri (Photo courtesy of Bacteria in Photos).
Image: Shigella flexneri (Photo courtesy of Bacteria in Photos).
An enzyme produced by the pathogenic bacterium Shigella flexneri selectively removes a fatty acid from certain membrane proteins and modifies their behavior in a fashion that disables the immune system’s communication infrastructure.

Myristic acid, a 14-carbon fatty acid, is commonly added to the penultimate, nitrogen-terminus, glycine residue in receptor-associated kinases to confer the membrane localization of the enzyme. The myristic acid has a sufficiently high hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell. In this way, myristic acid acts as a lipid anchor in biomembranes. This modification is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. Addition of myristic acid to proteins (myristoylation) has received a lot of attention from researchers due to its crucial role in the transformation of normal cells to cancer cells and for promoting cancer cell growth.

Some pathogenic organisms avoid immune system responses by removing myristic acid from immune cell membrane proteins (demyristoylation) and thereby disrupting communication among the various types of immune cells. Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) described in the April 4, 2013, issue of the journal Nature an irreversible mechanism of protein demyristoylation catalyzed by IpaJ (invasion plasmid antigen J), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity.

They reported that mass spectrometry had showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1 (ADP-ribosylation factor), thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. In addition, they showed that IpaJ cleaved an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation, and organelle function.

“Our findings provide insight into severe bacterial infectious diseases, as well as some forms of cancer, in which the attachment of fat molecules to proteins is an essential feature of the disease process,” said senior author Dr. Neal Alto, assistant professor of microbiology at the University of Texas Southwestern Medical Center.

“Normally, a macrophage will engulf an invading bacteria and send out cytokines, proteins that act as cellular alert signals, which in turn recruit more immune cells to the site of infection,” said Dr. Alto. “When the macrophages engulf Shigella, however, the bacteria use IpaJ to cut fatty acids from proteins, which need those fats attached in order to sound the alarm. Doing so buys more time for the bacteria to grow and survive. It is very interesting from a disease process point of view, but it is also important because we now have a potential drug target. The next step will be to identify small molecule inhibitors that are specific to this fat-snipping protease and that might be developed into drugs.”

Related Links:

University of Texas Southwestern Medical Center


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Thyroid ELISA Kit
AESKULISA a-TPO
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Heart attacks could be ruled out early with a new test, according to researchers (Photo courtesy of Mindray)

New High-Sensitivity Cardiac Troponin Test Quickly Rules Out Heart Attack

Patients arriving at an emergency department with symptoms like chest or arm pain, indicative of a potential heart attack, often prefer the comfort of home over a hospital bed—especially if they can be... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.