Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genomic Researchers Map Embryonic DNA and Histone Methylation Patterns

By LabMedica International staff writers
Posted on 22 May 2013
A recent paper compared DNA and histone methylation, the two molecular processes that regulate gene expression in the developing embryo.

The human genome contains 23,000 genes that must be expressed in specific cells at precise times. More...
Cells manage gene expression by wrapping DNA around clusters of globular histone proteins to form nucleosomes. These nucleosomes of DNA and histones are organized into chromatin. Changes to the structure of chromatin influence gene expression: genes are inactivated when the chromatin is condensed, and they are expressed when chromatin is open. These dynamic chromatin states are controlled by reversible epigenetic patterns of DNA methylation and histone modifications. Enzymes involved in this process include DNA methyltransferases (DNMTs), histone deacetylases (HDACs), histone acetylases, histone methyltransferases and the methyl-binding domain protein MECP2. Alterations in these normal epigenetic patterns can deregulate patterns of gene expression, which results in profound and diverse clinical outcomes.

In addition to DNA methylation, changes to histone proteins orchestrate DNA organization and gene expression. Histone-modifying enzymes are recruited to ensure that a receptive DNA region is either accessible for transcription or that DNA is targeted for silencing. Active regions of chromatin have unmethylated DNA and have high levels of acetylated histones, whereas inactive regions of chromatin contain methylated DNA and deacetylated histones.

As participants in the [US] National Institutes of Health's (Bethesda, MD, USA) Epigenome Roadmap Project investigators at the University of California, San Diego (USA; UCSD) and the Morgridge Institute for Research (Madison, WI, USA) delved into the processes that control the epigenetic regulation of embryonic development. To do this they differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage.

They reported in the May 9, 2013, online edition of the journal Cell that DNA promoter regions that were active in early developmental stages tended to be CG (cytosine/guanine) rich and mainly silenced by histone tri-methylation. By contrast, promoters for genes expressed preferentially at later stages were often CG poor and primarily employed DNA methylation upon repression. The early developmental regulatory genes were often located in large genomic domains that were generally devoid of DNA methylation in most lineages, which the investigators termed DNA methylation valleys (DMVs).

“By applying large-scale genomics technologies, we could explore how genes across the genome are turned on and off as embryonic cells and their descendant lineages choose their fates, determining which parts of the body they would generate,” said senior author Dr. Bing Ren, assistant professor of cellular and molecular medicine at UCSD. “These data are going to be very useful to the scientific community in understanding the logic of early human development. But I think our main contribution is the creation of a major information resource for biomedical research. Many complex diseases have their roots in early human development.”

Related Links:
[US] National Institutes of Health
University of California, San Diego
Morgridge Institute for Research



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.