We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

By LabMedica International staff writers
Posted on 25 Feb 2015
Print article
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).
A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which encodes the fusion protein mitofusin 2.

Despite the established role of mitofusins (Mfn1 and Mfn2) in mitochondrial fusion, only Mfn2 had been associated with metabolic and neurodegenerative diseases, which suggests that this protein is needed to maintain mitochondrial energy metabolism. Mice lacking the MFN1 gene, which encodes mitofusin 1, seem perfectly healthy, but MFN2-deficient mice die soon after birth. Furthermore, mutations in the MFN2 gene cause human diseases, including the peripheral neuropathy Charcot-Marie-Tooth type 2A. The molecular basis for the mitochondrial dysfunction encountered in the absence of Mfn2 has not been explained.

In the current study, investigators at the Max Planck Institute for Biology of Ageing (Cologne, Germany) worked with cultures of mouse heart muscle cells lacking the MFN2 gene.

They reported in the February 16, 2015, online edition of the Journal of Cell Biology that energy metabolism in the cells was impaired compared to that of healthy heart cells or of heart cells that lacked only Mfn1. The energy metabolic process in the Mfn2-deficient cells was found to have been disrupted by reduced levels of coenzyme Q, a key component of the mitochondrial respiratory chain that generates cellular energy in the form of ATP.

The reduced respiratory chain function in the mitochondria of cells lacking Mfn2 could be partially restored by supplementation with coenzyme Q10, which suggested a possible therapeutic strategy for patients with diseases caused by mutations in the MFN2 gene.

Related Links:

Max Planck Institute for Biology of Ageing


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.