We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Model for Lung Disease Research Based on Stem Cell-derived Lung Organoids

By LabMedica International staff writers
Posted on 08 Apr 2015
Print article
Image: The photomicrograph shows the three-dimensional structure of a laboratory grown human lung organoid. This self-organizing structure mimics the natural complexity of the human lung (Photo courtesy of the University of Michigan).
Image: The photomicrograph shows the three-dimensional structure of a laboratory grown human lung organoid. This self-organizing structure mimics the natural complexity of the human lung (Photo courtesy of the University of Michigan).
By manipulating cocktails of growth factors, researchers have stimulated human stem cells to morph into tissues that self-organize into three-dimensional structures populated by cells resembling those in the lung.

The research leading to development of these lung organoids was based on recent breakthroughs in three-dimensional organoid cultures for many organ systems, which have led to new physiologically complex in vitro models to study human development and disease.

In the current study, investigators at the University of Michigan (Ann Arbor, USA) manipulated developmental signaling pathways to guide the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids.

They reported in the March 24, 2015, online edition of the journal eLife that hPSCs generated ventral-anterior foregut spheroids, which were then expanded into human lung organoids (HLOs). HLOs consisted of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possessed upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. HLOs were able to survive in culture for more than 100 days.

Using RNA-sequencing, the investigators showed that HLOs were remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs would be an excellent model system for the study of human lung development, maturation, and disease.

“These mini lungs can mimic the responses of real tissues and will be a good model to study how organs form, change with disease, and how they might respond to new drugs,” said senior author Dr. Jason R. Spence, assistant professor of internal medicine and cell and developmental biology at the University of Michigan.

Related Links:
University of Michigan


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.