We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Laser-Based Tool Injects Nanoparticles and Macromolecules into Cells with Minimal Damage

By LabMedica International staff writers
Posted on 29 Apr 2015
Print article
Image: BLAST drives nanoparticles, enzymes, antibodies, and bacteria into cells at the rate of 100,000 cells per minute—significantly faster than current technology (Photo courtesy of UCLA - University of California, Los Angeles).
Image: BLAST drives nanoparticles, enzymes, antibodies, and bacteria into cells at the rate of 100,000 cells per minute—significantly faster than current technology (Photo courtesy of UCLA - University of California, Los Angeles).
Cell biologists have developed a laser-based tool that is capable of injecting large objects such as nanoparticles, bacteria, or macromolecules into cells at a speed much greater than allowed by current technologies.

Investigators at the University of California, Los Angeles (USA) call the new tool "biophotonic laser-assisted surgery tool (BLAST)." BLAST is, in essence, a silicon chip with an array of micrometer-wide holes, each surrounded by an asymmetric, semicircular coating of titanium.

A reservoir of liquid that includes the particles to be delivered is located beneath the holes. Target cells are loaded onto the silicon chip, and a laser pulse is used to heat the titanium coating, which instantly boils the water layer adjacent to parts of the cell. This generates an array of microcavitation bubbles that form pores in adjacent cell membranes through which cargo is gently driven by pressurized flow.

The investigators reported in the April 6, 2015, online edition of the journal Nature Methods that the platform delivered large items including bacteria, enzymes, antibodies, and nanoparticles into diverse cell types with high efficiency—up to 100,000 cells per minute—and cell viability.

“The new information learned from these types of studies could assist in identifying pathogen targets for drug development, or provide fundamental insight on how the pathogen–host interaction enables a productive infection or effective cellular response to occur,” said contributing author Dr. Michael Teitell, professor of pediatric and developmental pathology at the University of California, Los Angeles.

Related Links:

University of California, Los Angeles


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Unit-Dose Packaging solution
HLX
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.