We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Preliminary Clinical Trial Demonstrates Feasibility of Treating Multiple Myeloma with the Patient's Own Marrow-Infiltrating Lymphocytes

By LabMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Micrograph shows marrow-infiltrating lymphocytes in cell culture (Photo courtesy of Dr. Kimberly Noonan, Johns Hopkins University).
Image: Micrograph shows marrow-infiltrating lymphocytes in cell culture (Photo courtesy of Dr. Kimberly Noonan, Johns Hopkins University).
Results of a small clinical trial support the feasibility of using a multiple myeloma patient's marrow-infiltrating lymphocytes (MILs) as the basis for adoptive T cell therapy (ACT).

Investigators at Johns Hopkins University (Baltimore, MD, USA) hypothesized that MIL-based ACT in multiple myeloma could impart greater anti-tumor immunity in that they are obtained from the tumor microenvironment.

They discussed results from the first MILs ACT multiple myeloma clinical trial in the May 20, 2015, online edition of the journal Science Translational Medicine. For this study 22 patients with either newly diagnosed or relapsed disease had their MILs harvested, activated, and expanded with anti-CD3/CD28 beads plus interleukin-2, and subsequently re-infused on the third day following the standard regimen of high dose chemotherapy and stem cell transplant therapy.

Results revealed that seven patients experienced at least 90% reduction in tumor cell volume and survived, on average, 25.1 months without cancer progression. The remaining 15 patients had an average of 11.8 progression-free months following MILs therapy. Overall survival was 31.5 months for those with less than 90% disease reduction, while follow-up time is currently more than six years for those with a better response. None of the participants exhibited serious side effects from the MILs therapy.

"What we learned in this small trial is that large numbers of activated MILs can selectively target and kill myeloma cells," said senior author Dr. Ivan Borrello, professor of oncology at Johns Hopkins University. "Several US cancer centers have conducted similar experimental treatments, known as adoptive T cell therapy, but the Johns Hopkins team is apparently the only one to use MILs. Other types of tumor-infiltrating cells can be used, but they are usually less plentiful in patients' tumors and may not grow as well outside the body."

Related Links:

Johns Hopkins University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.