We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Microarray to Boost Developmental Delay Research

By LabMedica International staff writers
Posted on 23 Jun 2015
Print article
The Cytosure Constitutional v3 array set with eight arrays of 60,000 spots
The Cytosure Constitutional v3 array set with eight arrays of 60,000 spots (Photo courtesy of Oxford Gene Technology)
A new tool for studying the genetic causes of developmental delay was unveiled at a recent human genetics conference.

Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders.

A new tool for studying the genetic foundation of developmental delay, the Oxford Gene Technology (Oxford, United Kingdom) Cytosure Constitutional v3 DNA microarray, was introduced to genomic researchers at the June 2015 European Society of Human Genetics (ESHG) Conference held in Glasgow (United Kingdom).

The Cytosure Constitutional v3 array was developed in collaboration with the Wellcome Trust Sanger Institute (Hinxton, United Kingdom). This tool combines the most up-to-date and relevant developmental delay content from the recent Deciphering Developmental Disorders (DDD) study with the latest updates from ClinGen, an international cooperative dedicated to sharing genomic and phenotypic developmental disorder data provided by clinicians, researchers, and patients through centralized databases for clinical and research use.

Oxford Gene Technology has optimized the arrays via a proprietary probe design algorithm and experimental validation, enabling the selection of highly-targeted, specific probes throughout the genome. Regions with the highest priority are covered at exon-level resolution on the arrays, enabling single-exon detection in up to 502 prioritized genes of interest.

James Clough, executive vice president commercial at Oxford Gene Technology, said, “Through combining our superior array design capabilities with the latest research-led gene content, we are proud to offer our customers the most advanced array design available for accurately and easily identifying the causal aberrations underlying developmental delay. These new products underline Oxford Gene Technology’s long-standing commitment to providing cytogenetics researchers with the latest tools to further understand developmental disorders.”

Related Links:

Oxford Gene Technology
Wellcome Trust Sanger Institute
ClinGen


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.