We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bioreactor Culture of Dopamine-Producing Neurons May Lead to Personalized Treatment of Parkinson's Disease

By LabMedica International staff writers
Posted on 05 Jul 2015
Print article
Image: Neurons cultivated with the help of ordinary skin cells create a three-dimensional network on a chip (Photo courtesy of Dr. Edinson Lucumi Moreno, University of Luxembourg).
Image: Neurons cultivated with the help of ordinary skin cells create a three-dimensional network on a chip (Photo courtesy of Dr. Edinson Lucumi Moreno, University of Luxembourg).
By developing a procedure for transforming skin cells into functional dopamine-producing neurons, researchers have taken an important first step towards the development of personalized treatment of Parkinson's disease.

Parkinson's disease is characterized by the gradual loss of dopamine-producing neurons in the Substantia nigra section of the midbrain. So far there is no drug treatment available to halt or reverse this process.

Investigators at the University of Luxembourg (Luxembourg City) have applied the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route for personalized drug discovery for Parkinson's disease. The investigators initially converted normal skin cells into induced pluripotent stem cells (iPSCs) and then differentiated the iPSCs into dopaminergic neurons within three-dimensional microfluidic cell culture bioreactors.

Results published in the June 7, 2015, edition of the journal Lab on a Chip revealed that microbioreactor culture was as efficient as macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the dopamine biosynthetic pathway.

"We have the neurons grow in a gel that yields a far better model of their natural, three-dimensional environment," said senior author Dr. Ronan Fleming, leader of the systems biochemistry group at the University of Luxembourg. "In drug development, dozens of chemical substances can be tested for possible therapeutic effects in a single step. Because we use far smaller amounts of substances than in conventional cell culture systems, the costs drop to about one-tenth the usual. A further advantage is that the bioreactors can be loaded with cells originating from the skin cells of individual Parkinson's patients. This is an important step towards personalized drug development."

Related Links:

University of Luxembourg


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.