We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

By LabMedica International staff writers
Posted on 05 Jul 2015
Print article
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).
Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form and maintain the blood-brain barrier.

Pericytes are critical for maturation of the brain's blood vessels and development of the blood-brain barrier, but their role in maintenance of the adult blood-brain barrier, and how central nervous system pericytes differ from those of other tissues, is less well understood.

Pericytes are contractile cells that wrap around the endothelial cells of capillaries throughout the body. Pericytes are embedded in basement membrane where they communicate with endothelial cells by means of both direct physical contact and paracrine signaling. In the brain, these cells are a key component of the neurovascular unit, which includes endothelial cells, astrocytes, and neurons. Pericytes help sustain the blood–brain barrier as well as several other homeostatic and hemostatic functions of the brain by regulating capillary blood flow, the clearance and phagocytosis of cellular debris, and the permeability of the blood–brain barrier. A deficiency of pericytes in the central nervous system can cause the blood–brain barrier to break down, resulting in inflammation or death of brain tissues.

Investigators at the University of Gothenburg (Sweden) recently demonstrated that the forkhead transcription factor Foxf2 was specifically expressed in pericytes of the brain and that embryos of mice genetically engineered to lack the gene for Foxf2 developed intracranial hemorrhages, perivascular edema, thinning of the vascular basal lamina, and a leaky blood-brain barrier.

FOX (Forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Many FOX proteins are important to embryonic development. FOX proteins also have pioneering transcription activity by being able to bind condensed chromatin during cell differentiation processes. The defining feature of FOX proteins is the forkhead box, a sequence of 80 to 100 amino acids forming a motif that binds to DNA.

"Mice that have too little or too much Foxf2 develop various types of defects in the brain's blood vessels," said senior author Dr. Peter Carlsson, professor of chemistry and molecular biology at the University of Gothenburg.

Major changes in a region of chromosome six have been associated with an increased risk of stroke, but it has not been known which of the genes in the area were responsible. "The Foxf2 gene is an extremely interesting candidate, as it is located right in the middle of this region, and research is under way now in collaboration with clinical geneticists to investigate the extent to which variations in the Foxf2 gene affect people's risk of suffering a stroke," said Dr. Carlsson.

The study was published in the June 25, 2015, online edition of the journal Developmental Cell.

Related Links:
University of Gothenburg


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.