We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Intracellular Mesh Supports the Mitotic Spindle During Cell Division

By LabMedica International staff writers
Posted on 19 Jul 2015
Print article
Image: A three-dimensional vies view of the mesh: microtubules (green tubes) of the mitotic spindle are held together by a yellow network, the mesh (Photo courtesy of the University of Warwick).
Image: A three-dimensional vies view of the mesh: microtubules (green tubes) of the mitotic spindle are held together by a yellow network, the mesh (Photo courtesy of the University of Warwick).
Three-dimensional electron microscopy has revealed the existence of an intracellular mesh that supports cell division by maintaining the correct geometrical spacing of the chromosomes at the mitotic spindle.

Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power chromosome movement during mitosis. K-fibers are composed of many microtubules that are held together throughout their length.

When they switched from two-dimensional to three-dimensional electron microscopy, investigators at the University of Warwick (United Kingdom) discovered that K-fiber microtubules (MTs) were connected by a network of MT connectors. The investigators called this network "the mesh" and described it as being made of linked multipolar connectors. Each connector had up to four struts, so that a single connector could link up to four MTs.

While optimal stabilization of K-fibers by the mesh was required for normal progression through mitosis, the investigators reported in the June 19, 2015, online edition of the journal eLife that molecular manipulation of the mesh by overexpression of TACC3 (transforming, acidic coiled-coil containing protein 3) caused disorganization of the K-fiber MTs. TACC3 is a motor spindle protein that is thought to play a role in stabilization of the mitotic spindle. This protein may also play a role in growth a differentiation of certain cancer cells.

Senior author Dr. Stephen J. Royle, associate professor of biomedical cell biology at the University of Warwick, said, "We had been looking in two-D and this gave the impression that "bridges" linked microtubules together. This had been known since the 1970s. All of a sudden, tilting the fiber in three-D showed us that the bridges were not single struts at all but a web-like structure linking all the microtubules together."

"As a cell biologist you dream of finding a new structure in cells but it is so unlikely," said Dr. Royle. "Scientists have been looking at cells since the 17th Century and so to find something that no-one has seen before is amazing."

Related Links:
University of Warwick


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Flow Cytometer
BF – 710

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.