We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Promising Cancer Immunotherapy Method Relies on Artificial Magnetic Antigen Presenting Cells

By LabMedica International staff writers
Posted on 26 Jul 2015
Print article
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Applying a magnetic field caused the nano-aAPCs—and their receptors—to cluster together, leading to T-cell stimulation (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Applying a magnetic field caused the nano-aAPCs—and their receptors—to cluster together, leading to T-cell stimulation (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Cancer researchers have developed a method based on magnetic nanoparticles that enables the rapid extraction, enrichment, and expansion of a T-cell population that shows great promise as a tool for immunotherapy.

Adoptive immunotherapy can induce long term tumor regression, but widespread adoption of this approach has been limited by the cost and complexity of generating tumor-specific T-cells.

Investigators at Johns Hopkins University (Baltimore, MD, USA) developed an improved method for generating tumor-specific T-cells to use for adoptive immunotherapy. Their method employed paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T-cells from rare naïve precursors.

Thus far, aAPCs have been synthesized by coupling T-cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies. Thus, for the current study, the investigators manufactured aAPCs from biocompatible iron-dextran paramagnetic particles (50–100 nanometers in diameter).

Details of the methodology were present in a paper published in the July 14, 2015, online edition of the journal ACS Nano. The investigators mixed blood plasma from mice and, separately, humans with magnetic aAPCs that had been coated with tumor antigens. The plasma was passed through a magnetic column, and T-cells adhered to the aAPCs and were retained on the column. Other types of cells were washed through the column and discarded. The magnetic field of the column activated the T-cells, which were then washed off and cultured. After one week, their numbers had expanded by an estimated 5,000 to 10,000 times.

Senior author Dr. Jonathan Schneck, professor of pathology, medicine, and oncology at Johns Hopkins University, said, “The challenge has been to train these cells efficiently enough, and get them to divide fast enough, that we could use them as the basis of a therapy for cancer patients. We have taken a big step toward solving that problem.”

Related Links:

Johns Hopkins University


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.