We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Promising Cancer Immunotherapy Method Relies on Artificial Magnetic Antigen Presenting Cells

By LabMedica International staff writers
Posted on 26 Jul 2015
Print article
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Applying a magnetic field caused the nano-aAPCs—and their receptors—to cluster together, leading to T-cell stimulation (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Image: Applying a magnetic field caused the nano-aAPCs—and their receptors—to cluster together, leading to T-cell stimulation (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).
Cancer researchers have developed a method based on magnetic nanoparticles that enables the rapid extraction, enrichment, and expansion of a T-cell population that shows great promise as a tool for immunotherapy.

Adoptive immunotherapy can induce long term tumor regression, but widespread adoption of this approach has been limited by the cost and complexity of generating tumor-specific T-cells.

Investigators at Johns Hopkins University (Baltimore, MD, USA) developed an improved method for generating tumor-specific T-cells to use for adoptive immunotherapy. Their method employed paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T-cells from rare naïve precursors.

Thus far, aAPCs have been synthesized by coupling T-cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies. Thus, for the current study, the investigators manufactured aAPCs from biocompatible iron-dextran paramagnetic particles (50–100 nanometers in diameter).

Details of the methodology were present in a paper published in the July 14, 2015, online edition of the journal ACS Nano. The investigators mixed blood plasma from mice and, separately, humans with magnetic aAPCs that had been coated with tumor antigens. The plasma was passed through a magnetic column, and T-cells adhered to the aAPCs and were retained on the column. Other types of cells were washed through the column and discarded. The magnetic field of the column activated the T-cells, which were then washed off and cultured. After one week, their numbers had expanded by an estimated 5,000 to 10,000 times.

Senior author Dr. Jonathan Schneck, professor of pathology, medicine, and oncology at Johns Hopkins University, said, “The challenge has been to train these cells efficiently enough, and get them to divide fast enough, that we could use them as the basis of a therapy for cancer patients. We have taken a big step toward solving that problem.”

Related Links:

Johns Hopkins University


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Flu Test
ID NOW Influenza A & B 2
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.