We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bone Marrow Transplantation Techniques Are Successfully Adapted for Lung Repair

By LabMedica International staff writers
Posted on 29 Jul 2015
Print article
Image: New lung cells are continuously created to replace the damaged ones: Lung tissue six weeks after stem cell transplantation (left) and 16 weeks after transplantation (right). Cells that originated in the transplanted stem cells are green, as opposed to the uncolored host lung cells (Photo courtesy of the Weizmann Institute of Science).
Image: New lung cells are continuously created to replace the damaged ones: Lung tissue six weeks after stem cell transplantation (left) and 16 weeks after transplantation (right). Cells that originated in the transplanted stem cells are green, as opposed to the uncolored host lung cells (Photo courtesy of the Weizmann Institute of Science).
A new approach for repairing the damage caused to lung tissue by diseases such as emphysema, bronchitis, asthma, and cystic fibrosis is based on transplanting embryonic stem cells into damaged lungs that have been conditioned by radiation treatment.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) recognized the similarity between the arrangement of cellular compartments within the lung and the arrangement of similar compartments in the bone marrow. They reasoned that methods used for bone marrow transplantation might prove useful for inducing stem cells to mature into functional lung tissue.

Initial experiments indicated that human and mouse embryonic lung tissue from the canalicular stage of development (20–22 weeks of gestation for humans, and embryonic day 15–16 for the mouse) were enriched with stem cell progenitors residing in distinct niches. Younger cells had not yet completed the process of differentiation, while older cells were less capable of lung regeneration.

The investigators exposed naphthalene-injured, lung damaged mice to doses of sublethal radiation to empty out lung progenitor niches and to reduce stem cell competition. A single cell suspension of canalicular lung tissue of either mouse or human fetal origin was then administered intravenously.

Results published in the July 13, 2015, online edition of the journal Nature Medicine revealed that recipients of the single cell suspension transplant exhibited marked improvement in lung compliance. The treatment induced marked long-term lung chimerism with donor type structures or "patches" that contained epithelial, mesenchymal, and endothelial cells.

"Certain stem cells that normally reside in the lungs are highly similar to those in the bone marrow," said senior author Dr. Yair Reisner, professor of immunology at the Weizmann Institute of Science. "In each organ, the stem cells, rather than being distributed throughout the tissue, are concentrated in special compartments that contain all the provisions that stem cells need. That understanding suggested to us that we might be able to apply our knowledge of techniques for transplanting bone marrow stem cells to repairing lung tissue, but our real vision, bolstered by this success, is to create a bank of lung tissue that will be a resource for embryonic lung stem cells."

Related Links:

Weizmann Institute of Science


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.