We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cell Surface Protein Deletion Blocks AML Growth in Mouse Model

By LabMedica International staff writers
Posted on 03 Aug 2015
Print article
Image: Photomicrograph showing acute myeloid leukemia (AML) cells (Photo courtesy of the University of California, San Diego).
Image: Photomicrograph showing acute myeloid leukemia (AML) cells (Photo courtesy of the University of California, San Diego).
Cancer researchers have found that the cell surface protein tetraspanin3 (Tspan3) is required for the development and propagation of the fast-growing and extremely difficult-to-treat blood cancer, acute myelogenous leukemia (AML).

AML is an aggressive cancer that strikes both adults and children and is frequently resistant to therapy. Thus, identifying signals needed for AML propagation is a critical step toward developing new approaches for treating this disease.

Towards this end, investigators at the University of California, San Diego (USA; www.ucsd.edu) examined the role of Tspan3 by genetically engineering a line of mice to lack the gene required for production of this protein.

The investigators reported in the July 23, 2015, online edition of the journal Cell Stem Cell that Tspan3 "knockout" mice were born without overt defects. However, Tspan3 deletion impaired leukemia stem cell self-renewal and disease propagation and markedly improved survival in mouse models of AML. Additionally, Tspan3 inhibition blocked growth of AML patient samples, suggesting that Tspan3 was also important in human disease.

Results also showed that at the molecular level Tspan3 was a target of the RNA binding protein Musashi 2, which plays a key role in AML, and that the chemokine response of AML cancer cells was impaired by Tspan3 deletion.

“There has been great progress in pediatric leukemia research and treatment over the last few years,” said senior author Dr. Tannishtha Reya, professor of pharmacology at the University of California, San Diego. “But unfortunately, children with acute myeloid leukemia are often poor responders to current treatments. So identifying new approaches to target this disease remains critically important.”

“Tetraspanin3 (Tspan3), a cell surface molecule, serves as a key link for cancer cells to interact with supportive parts of the microenvironment that help them replicate and flourish,” said Dr. Reya. “We found that blocking this molecule leads to a very profound inhibition of leukemia growth. The work really focuses on trying to understand the dependence of cancer cells on the microenvironment that surrounds them. The microenvironment refers to the normal cells, molecules, and blood vessels around the cancer that may support and fuel its expansion.

Related Links:

University of California, San Diego


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Lab Sample Rotator
H5600 Revolver
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.