We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Long Strands of Repetitive RNA Found to Cause Severe Neurodegenerative Disorders

By LabMedica International staff writers
Posted on 06 Sep 2015
Print article
Image: Neurons (red) created from ALS patients bearing the C9orf72 mutation show clumps of the RanGAP protein (yellow) in their nuclei (white). The nuclei of other cells are in shown in blue (Photo Jeffrey Rothstein laboratory, Johns Hopkins University).
Image: Neurons (red) created from ALS patients bearing the C9orf72 mutation show clumps of the RanGAP protein (yellow) in their nuclei (white). The nuclei of other cells are in shown in blue (Photo Jeffrey Rothstein laboratory, Johns Hopkins University).
Neurologists seeking the molecular basis for degenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have linked a mutation in the C9orf72 (chromosome 9 open reading frame 72) gene to the malfunction of a protein that normally transports molecules through the nuclear membrane and into the cell's cytoplasm.

The C9orf72 mutation, which causes production of multiple repeats of RNA molecules with the hexanucleotide repeat expansion (HRE) G4C2 (GGGGCC), is the most common of the known genetic risk factors for ALS and FTD. It is associated with 40% of inherited ALS cases, 25% of inherited FTD, and about 10% of nonhereditary cases of each disease.

Investigators at Johns Hopkins University (Baltimore, MD, USA) worked with brain tissue from human ALS and FTD patients as well with a fruit fly (Drosophila) model of these neurodegenerative diseases.

They reported in the August 26, 2015, online edition of the journal Nature that a candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified the RanGAP (the Drosophila orthologue of human RanGAP1) protein, a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration.

The RanGAP1 gene encodes a protein that associates with the nuclear pore complex and participates in the regulation of nuclear transport. The encoded protein interacts with Ras-related nuclear protein 1 (Ran) and regulates guanosine triphosphate (GTP)-binding and exchange. Ran is a small G protein that is essential for the translocation of RNA and proteins through the nuclear pore complex.

The investigators found that RanGAP physically interacted with HRE RNA and was misplaced in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Cells expressing the C9orf72 mutation produced long strands of repetitive RNA that blocked RanGAP function and caused a pile-up of proteins at the pores in the cell nucleus, preventing movement out of the nucleus and into the cytoplasm.

Treatment of neurons expressing the C9orf72 mutations with antisense oligonucleotides directed at the HRE region prevented interaction of the RNA with the RanGAP protein and reversed ALS and FTD symptoms.

"The discovery several years ago of this mutation— the most common one linked to ALS and FTD—was really a game changer for the field because it was not a typical genetic mutation," said senior author Dr. Jeffrey Rothstein, professor of neurology at Johns Hopkins University. "Now we have some information about what it is doing early on to damage brain and spinal cord cells. We still do not know every step between the C9orf72 mutation and cellular death in the brain, but our belief is that this is what starts it off, and this is certainly a good therapeutic target."

Related Links:

Johns Hopkins University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Urine Strips
11 Parameter Urine Strips
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.