We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Toxic Peptide from Wasp Venom Targets Cancer Cell Membrane Phospholipids

By LabMedica International staff writers
Posted on 15 Sep 2015
Print article
Image: The Brazilian social wasp Polybia paulista is the source of the Polybia-MP1 anticancer peptide (Photo courtesy of Dr. Mario Palma, Sao Paulo State University).
Image: The Brazilian social wasp Polybia paulista is the source of the Polybia-MP1 anticancer peptide (Photo courtesy of Dr. Mario Palma, Sao Paulo State University).
A toxic peptide component of the venom produced by a South American wasp effectively destroys some types of cancer cells through interactions with groups of phospholipids that are distributed abnormally on their cell membranes.

The Brazilian wasp Polybia paulista produces the bioactive host-defense peptide Polybia-MP1 (MP1) that has known anticancer properties. Its ability to poke holes in cancer cell membranes has been attributed to excess phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the outer membrane of cancer cells. Normal cells, which do not have PS or PE exposed on the cell surface, are not damaged by exposure to MP1.

Investigators at the University of Leeds (United Kingdom) and their collaborators at Sao Paulo State University (Brazil) studied the mode of action of MP1 by creating a series of model membranes with PE and PS distributed in a various patterns internally and externally. They used a combination of membrane permeability assays and imaging techniques in this endeavor.

Results published in the September 1, 2015, issue of Biophysical Journal revealed that PS lipids significantly enhanced the bound concentration of MP1 peptide on the membrane by a factor of seven to eight. Furthermore, a combination of membrane permeability assays and imaging techniques showed that PE significantly increased the susceptibility of the membrane to disruption by MP1 and caused an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores.

Atomic-force microscopy imaging revealed differences in the pore formation mechanism with and without the presence of PE. With PE present, MP1 was more effective at disrupting the membrane, increasing the size of holes that it caused by a factor of 20 to 30. Therefore, PS and PE lipids synergistically combined to enhance the formation of membrane pores by MP1, implying that the combined enrichment of both these lipids in the outer membranes of cancer cells was highly significant for MP1’s anticancer action.

"Formed in only seconds, these large pores are big enough to allow critical molecules such as RNA and proteins to easily escape cells," said contributing author Dr. Joao Ruggiero Neto, professor of biophysics at Sao Paulo State University. "The dramatic enhancement of the permeabilization induced by the peptide in the presence of PE and the dimensions of the pores in these membranes was surprising."

"Understanding the mechanism of action of this peptide will help in translational studies to further assess the potential for this peptide to be used in medicine," said senior author Dr. Paul Beales, senior research fellow in structural molecular biology at the University of Leeds. "As it has been shown to be selective to cancer cells and non-toxic to normal cells in the lab, this peptide has the potential to be safe, but further work would be required to prove that."

Related Links:

University of Leeds
Sao Paulo State University 


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.