We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Alternate Splicing Proteins Critically Linked to Skin and Organ Development

By LabMedica International staff writers
Posted on 06 Oct 2015
Print article
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).
Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body.

Two steps are required for genes to manufacture their protein products. The first, transcription, produces an intermediate RNA molecule or "transcript"; the second step, translation, turns the transcript into a protein. Most genes in mammals contain stretches of DNA called exons, which code for protein, interspersed with sequences called introns that do not. Therefore, a transcript must be "spliced" before translation—the introns are removed and the exons joined. In some genes, certain exons can be optionally included or excluded from a transcript to produce different versions of the same protein that can often have very different functions. This is known as alternative splicing, and is essential for normal development.

Esrp1 (epithelial splicing regulatory protein 1) and Esrp2 (epithelial splicing regulatory protein 2) are two closely related proteins that regulate alternative splicing in epithelial cells. These specialized cells form sheets that line most organs in the body and are found in the epidermis, the outermost layer of the skin. Although Esrp1 and Esrp2 have previously been studied in the laboratory using cultured cell lines, their roles have not been investigated in living animals.

In a study published in the September 15, 2015, online edition of the journal eLife, investigators at the University of Pennsylvania (Philadelphia, USA) described experiments performed with lines of mice genetically engineered to lack the genes for either Esrp1, Esrp2, or for both proteins.

They found that mice that only lacked Esrp1 developed a cleft lip and palate. In mice that lacked both proteins, many organs failed to develop correctly and in some cases did not form at all. In the epidermis, the loss of Esrp1 and Esrp2 disrupted the splicing of the transcripts from genes that give epithelial cells many of their specialized characteristics, such as the ability to form sheets of cells with well-formed junctions between them. Thus, epidermis comprising cells that lacked Esrp1 and Esrp2 could not form a proper barrier layer, which is a crucial role of epithelia in skin as well as in other organs.

"Clearly there are many important roles for these genes in facial, skin, and organ development and we are only just starting to catalogue them," said senior author Dr. Russ P. Carstens, associate professor of medicine and genetics at the University of Pennsylvania. "The Esrp1-knockout mice will prove to be a valuable new model for studying cleft lip. There have been many knockout mouse models of cleft palate, but very few of cleft lip, which is actually the more common defect in humans."

Related Links:

University of Pennsylvania


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.