We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Gene Therapy Treatment Extends Life of Mice Severely Affected by Muscular Dystrophy

By LabMedica International staff writers
Posted on 11 Oct 2015
Print article
Image: Molecular model of the dystrophin protein (Photo courtesy of Wikimedia Commons).
Image: Molecular model of the dystrophin protein (Photo courtesy of Wikimedia Commons).
An alternative gene therapy approach was used to successfully treat a mouse model of Duchenne muscular dystrophy (DMD).

DMD is caused by mutations in the gene that encodes the protein dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before they reach the age of 30.

To develop methods for treating this syndrome, investigators at Ohio State University (Columbus, USA) chose to work with mice deficient for dystrophin and utrophin, (mdx/utrn−/−) that die between six and 20 weeks of age because of severe muscle weakness, pronounced growth retardation, and kyphosis rather than the more frequently used dmx model whose animals are clinically normal despite lacking dystrophin.

Dystrophin deficiency has been definitively established as one of the root causes of the general class of myopathies collectively referred to as muscular dystrophy. In normal muscle cells, utrophin is located at the neuromuscular synapse and myotendinous junctions. It is necessary for normal membrane maintenance, and for the clustering of the acetylcholine receptor.

The investigators evaluated an alternative to dystrophin replacement by overexpressing the ITGA7 (integrin, alpha 7) gene using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin–glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and its overexpression does not elicit an immune response.

In the current study, five to seven day-old mice deficient for dystrophin and utrophin, (mdx/utrn−/−)were treated with the ITGA7 gene delivered via the AAV carrier. Results published in the August 11, 2015, online edition of the journal Human Gene Therapy revealed that by eight weeks following ITGA7 injection, there was widespread expression of the gene at the sarcolemma of multiple muscles. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn−/− mouse, including kyphosis. Overexpression of alpha7 expression protected against loss of force following contraction-induced damage, and increased specific force in the diaphragm and EDL (extensor digitorum longus) muscles eight weeks after gene transfer.

Mice of the mdx/utrn−/− line usually die between six to 20 weeks of age, but gene transfer of alpha7 extended longevity by more than 10 weeks.

Related Links:

Ohio State University


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.