We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNAs Shown to Control Lipid and Cholesterol Metabolism in Mouse Models

By LabMedica International staff writers
Posted on 08 Nov 2015
Print article
Image: Comparison of a knockout obese mouse (left) and a normal laboratory mouse (right). Lipid metabolism in mice was shown to be regulated by a group of microRNAs (Photo courtesy of Wikimedia Commons).
Image: Comparison of a knockout obese mouse (left) and a normal laboratory mouse (right). Lipid metabolism in mice was shown to be regulated by a group of microRNAs (Photo courtesy of Wikimedia Commons).
A group of microRNAs was identified as modulators of lipid and cholesterol metabolism in two mouse models and may serve as targets for drugs designed to protect against cardiovascular diseases.

MicroRNAs (miRNAs) are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the Harvard Medical School (Boston, MA, USA) had found previously that the microRNA miR-33 suppressed production of beneficial HDL cholesterol and that antisense blocking of miR-33 increased HDL levels in an animal model.

In the current study, which was published in the October 26, 2015, online edition of the journal Nature Medicine, the investigators reviewed genome-wide association studies involving more than 188,000 individuals. This review yielded 69 microRNAs that were coded by gene loci known to be associated with lipid abnormalities.

Using a tool that predicted the targets of microRNAs based on matches between their nucleotide sequences and those of protein-coding genes and a database of identified gene functions, the investigators identified four microRNAs that appeared to control genes involved in cholesterol and triglyceride levels and in other metabolic functions, such as glucose metabolism.

Two of the microRNAs, miR-128-1 and miR-148a, were found to control the expression of proteins essential to the regulation of cholesterol/lipid levels in cells growing in culture and in high-fat diet-fed C57BL/6J and Apoe-null mouse models. The microRNA miR-128-1 was also found to regulate fatty liver deposits, insulin signaling, and maintenance of blood sugar levels.

"While we and others have recently identified microRNAs that control cholesterol and fat metabolism and trafficking, no studies to date have systematically looked at all non-coding factors, such as microRNAs, in genetic studies of human diseases and other traits," said senior author Dr. Anders Naar, professor of cell biology at Harvard Medical School. "Using human genetic data from almost 190,000 individuals, we have linked 69 microRNAs to increased genetic risk for abnormal cholesterol and triglyceride levels, and showed that four of these act to control proteins we know are involved in those metabolic activities. We are following up these findings with studies to address whether antisense blocking of these microRNAs could decrease atherosclerosis, cardiovascular disease, and inflammatory fatty liver diseases in animals. We hope these findings will lead to new, more effective ways of treating or even preventing cardiovascular disease and other metabolic disorders."

Related Links:

Harvard Medical School


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.