We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Subset of Immune T-Cells Protects Against Metabolic Syndrome in Mouse Model

By LabMedica International staff writers
Posted on 16 Nov 2015
Print article
Image: Fat tissue cells are enlarged and more loosely packed in mice lacking perforin-rich dendritic cells (left) compared with the fat tissue of regular mice (right). Inset: crown-like structures within the fat tissue (left, dark brown) are associated with increased inflammation (Photo courtesy of the Weizmann Institute of Science).
Image: Fat tissue cells are enlarged and more loosely packed in mice lacking perforin-rich dendritic cells (left) compared with the fat tissue of regular mice (right). Inset: crown-like structures within the fat tissue (left, dark brown) are associated with increased inflammation (Photo courtesy of the Weizmann Institute of Science).
A subset of immune T-cells lacking the lytic protein perforin was found to be responsible for inducing the onset of metabolic syndrome (obesity, high blood pressure, high levels of blood sugar and cholesterol) in mice fed a normal diet.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) were seeking molecular clues that would clarify the emerging evidence that immunological mechanisms underlie metabolic control of adipose tissue.

To this end they used bone marrow transplantation to generate a line of mice that lacked the perforin-containing granules (perf-DCs) normally found in this subset of dendritic T-cells. Perforin is a protein that creates transmembrane tubules and is capable of lysing non-specifically a variety of target cells. This protein is one of the main cytolytic proteins of cytolytic granules, and it is known to be a key effector molecule for T-cell- and natural killer-cell-mediated cytolysis.

The investigators reported in the September 15, 2015, online edition of the journal Immunity that the perforin-deficient mice progressively gained weight and exhibited features of metabolic syndrome. This phenotype was associated with an altered repertoire of T-cells residing in adipose tissue and could be completely prevented by T-cell depletion in vivo.

A similar impact of perf-DCs on inflammatory T-cells was also found in a well-defined model of multiple sclerosis, experimental autoimmune encephlalomyelitis (EAE). Thus, perf-DCs probably represent a regulatory cell subpopulation critical for protection from metabolic syndrome and autoimmunity.

Related Links:

Weizmann Institute of Science


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.