We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cultured Liver Cells Now Available for Research Applications

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: Polarized fluorescent micrograph showing hepatocytes generated by the upcyte technique (Photo courtesy of Dr. Yaakov Nahmias, Hebrew University of Jerusalem, Israel).
Image: Polarized fluorescent micrograph showing hepatocytes generated by the upcyte technique (Photo courtesy of Dr. Yaakov Nahmias, Hebrew University of Jerusalem, Israel).
An advance in cell culture technology will enable researchers to maintain liver cells (hepatocytes) in culture for up to 40 replication cycles, which will provide important study material for research, clinical applications, and pharmaceutical development.

Hepatocytes have a critical role in the metabolism of an organism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Heretofore, attempts to expand human hepatocytes in the laboratory have generated immortalized cancer cells with little metabolic function.

Recently, investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the biotechnology company upcyte technologies GmbH (Hamburg, Germany) described a process for growing in vitro cultures of human hepatocytes.

They reported in the October 26, 2015, online edition of the journal Nature Biotechnology that weak expression of the E6 and E7 genes from human papilloma virus (HPV) released hepatocytes from cell-cycle arrest and allowed them to proliferate in response to stimulation by Oncostatin M (OSM), a member of the interleukin 6 (IL-6) super family of cytokines, which is involved in liver regeneration. This procedure has been dubbed the "upcyte" technique.

Stimulation of cultures with OSM according to the upcyte procedure caused cell proliferation, with doubling time of 33 to 49 hours. Removal of OSM then caused growth arrest and hepatic differentiation within four days, generating populations of 1013 to 1016 highly functional liver cells from a single human hepatocyte isolate.

Differentiated hepatocytes showed transcriptional and toxicity profiles and cytochrome P450 induction similar to those of primary human hepatocytes. Replication and infectivity of Hepatitis C virus (HCV) in differentiated hepatocytes were similar to those of Huh7.5.1 human hepatoma cells.

“The approach is revolutionary,” said contributing author Dr. Joris Braspenning, CSO of upcyte technologies GmbH. “Its strength lies in our ability to generate liver cells from multiple donors, enabling the study of patient-to-patient variability and idiosyncratic toxicity.”

“This is the holy grail of liver research,” said senior author Dr. Yaakov Nahmias, professor of bioengineering at the Hebrew University of Jerusalem. “Our technology will enable thousands of laboratories to study fatty liver disease, viral hepatitis, drug toxicity, and liver cancer at a fraction of the current cost. Genetic modifications preclude using the cells for transplantation, but we may have found the perfect cell source for the bio-artificial liver project.”

Related Links:

Hebrew University of Jerusalem 
upcyte technologies GmbH


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.