We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetically Engineered Mouse Model Mimics Rare Human Bone Disorder

By LabMedica International staff writers
Posted on 25 Jan 2016
Print article
Image: Cross-section of a mouse femur. The white and purple cells are bone marrow, the pink area is bone, and the arrows show osteoclasts resorbing bone. This mouse has too many osteoclasts; it has a variant of the NOTCH2 gene that causes a disease akin to Hajdu-Cheney syndrome in humans (Photo courtesy of Stefano Zanotti/Canalis Laboratory, University of Connecticut).
Image: Cross-section of a mouse femur. The white and purple cells are bone marrow, the pink area is bone, and the arrows show osteoclasts resorbing bone. This mouse has too many osteoclasts; it has a variant of the NOTCH2 gene that causes a disease akin to Hajdu-Cheney syndrome in humans (Photo courtesy of Stefano Zanotti/Canalis Laboratory, University of Connecticut).
A model for the study of the rare bone disorder Hajdu-Cheney syndrome was developed by genetically engineering a line of mice to express a specific Notch2 mutation.

Notch2 is a member of the notch family of transmembrane proteins that share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple, different domain types. Notch family members play a role in a variety of developmental processes by controlling cell fate decisions. The Notch signaling network is an evolutionarily conserved intercellular signaling pathway that regulates interactions between physically adjacent cells. Mutations within the last coding exon of NOTCH2 have been shown to be the main cause of the Hajdu-Cheney syndrome.

Hajdu-Cheney syndrome—an exceedingly rare disease, with fewer than 100 cases ever described—is characterized by osteoporosis and fractures. Development of this disease is associated with NOTCH2 (neurogenic locus notch homolog protein 2) mutations that result in a truncated stable protein that avoids deactivation by the cell.

To study the relationship between the NOTCH2 mutation and the disease syndrome, investigators at the University of Connecticut (Storrs, USA) created a mouse model that reproduced Hajdu-Cheney syndrome by introducing a mutation in the NOTCH2 locus leading to a change at the amino acid level.

They reported in the December 1, 2015, online edition of the Journal of Biological Chemistry that heterozygous mutants were smaller and had shorter femurs than controls; and at one month of age exhibited cancellous and cortical bone osteopenia (lower than normal bone mineral density). As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone was found to have an increased number of osteoclasts (bone cells that break down bone tissue) and bone resorption, without a decrease in osteoblast (bone precursor cells) number or bone formation.

"Until now, nobody understood why people afflicted with the disease had osteoporosis and fractures," said first author Dr. Ernesto Canalis, professor of orthopedic surgery at the University of Connecticut. "There are a few symptoms of the disease in humans—such as shortened fingers and oddly shaped skull bones—that the mice do not display. But overall, the mouse model is a very good model of the human disease."

Related Links:
University of Connecticut


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.