We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Prolonged Cell Division Arrest Prevents Development of Cancers Caused by Epstein-Barr Virus

By LabMedica International staff writers
Posted on 02 Feb 2016
Print article
Image: Green fluorescent dyes shown in this micrograph mark the presence of the glucose transporter, GLUT1, on the surface of lymphoblastoid cells which go on to form the lymphomas caused by Epstein-Barr virus. GLUT1 appears here because these cells have been taken over by the virus, which increases demand for more glucose to continue its infectious path (Photo courtesy of Dr. Amy Hafez, Duke University).
Image: Green fluorescent dyes shown in this micrograph mark the presence of the glucose transporter, GLUT1, on the surface of lymphoblastoid cells which go on to form the lymphomas caused by Epstein-Barr virus. GLUT1 appears here because these cells have been taken over by the virus, which increases demand for more glucose to continue its infectious path (Photo courtesy of Dr. Amy Hafez, Duke University).
A mechanism has been identified that helps explain why despite most people having been infected with Epstein-Barr virus (EBV), very few develop the lymphomas and other cancers the virus can cause.

EBV was the first human tumor virus discovered. Although nearly all adults are infected with EBV, very few go on to develop disease, for reasons that are only now beginning to be understood.

Infection with EBV induces a period of very rapid cell division, which requires an increased supply of metabolites, such as nucleotides, amino acids, and lipids. Investigators at Duke University (Durham, NC, USA) found that EBV-infected cells that were unable to meet this increased metabolic demand were forced to stop proliferating and underwent a permanent growth arrest called senescence.

They reported in the January 22, 2016, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that arrested cells had a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA (Kreb's) cycle and oxidative phosphorylation. Furthermore, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins. Increased sestrin expression led to activation of AMPK (5' AMP-activated protein kinase), a reduction in mTOR (mammalian target of rapamycin) signaling, and, consequently, elevated autophagy that was important for cell survival.

In assessing the metabolic changes from early infection to long-term outgrowth, the investigators found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy.

Senior author Dr. Micah Luftig, associate professor of molecular genetics and microbiology at Duke University, said, "For the most part, a healthy immune system stops Epstein-Barr virus from making much headway. In fact, many of the cancers linked to EBV are found mostly in immune-compromised patients whose ability to fight it off has been weakened. But another answer may be this newly discovered senescence trigger."

Related Links:

Duke University 


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.