Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Dual Cyclin-Dependent Kinase Inhibitor Effective Against Multiple Myeloma in Preclinical Studies

By LabMedica International staff writers
Posted on 16 Mar 2016
Results obtained during preclinical studies support the continued development of a dual cyclin-dependent kinase inhibitor for the treatment of multiple myeloma (MM).

The experimental drug ON123300 was developed by Onconova Therapeutics Inc. More...
(Newtown, PA, USA). It is a novel small molecule, dual inhibitor of the c-MYC activated kinases ARK5 (AMPK-related protein kinase 5) and CDK4 (cyclin-dependent kinase 4).

c-MYC (v-myc myelocytomatosis viral oncogene homolog protein) is a master transcription factor that disrupts normal control of cellular metabolism through proteins such as ARK5, while also activating the cell cycle through proteins such as CDK4. Inhibition of ARK5 by ON123300 results in the collapse of oncogene-altered energy metabolism, leading to cell death. Targeting CDK4 leads to G1 arrest, inhibiting MYC-driven cell cycle activation and DNA synthesis.

Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. Investigators at Mount Sinai School of Medicine (New York, NY, USA) examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 would result in a better therapeutic outcome.

To this end they worked with cancer cell cultures and a mouse xenograft MM model. Results published in the March 1, 2016, issue of the journal Cancer Research revealed that treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. MM cells sensitive to ON123300 were found to have a unique genomic signature.

ON123300-mediated ARK5 inhibition or treatment with ARK5-specific siRNAs (short inhibiting RNAs) resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation caused increased SIRT1 (sirtuin 1, a histone deacetylase involved in numerous critical cell processes including DNA repair and apoptosis) levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays.

"Our study results show that ON123300 induces cell death and negatively regulates key oncogenic pathways in multiple myeloma cells," said senior author Dr. Samir Parekh, associate professor of medicine, hematology, medical oncology, and oncological sciences at Mount Sinai School of Medicine. "This is the first report showing potent cytotoxicity of CDK4/ARK5 inhibition in MM and provides the foundation for further clinical trials using CDK4/ARK5 inhibitors to improve outcomes for MM patients. Even in the era of great drug development, there is an urgent need an urgent need to develop drugs that are less toxic and achieve longer remissions for all patients."

Related Links:

Onconova Therapeutics Inc.
Mount Sinai School of Medicine



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.