We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Insulin Secretion Enhanced by Beta Cell Senescence

By LabMedica International staff writers
Posted on 16 Mar 2016
Print article
Image: Human beta cells grown in culture (blue). Cells on right were induced to undergo senescence, causing them to secrete more insulin, stained in red (Photo courtesy of Dr. Ronny Helman, the Hebrew University of Jerusalem).
Image: Human beta cells grown in culture (blue). Cells on right were induced to undergo senescence, causing them to secrete more insulin, stained in red (Photo courtesy of Dr. Ronny Helman, the Hebrew University of Jerusalem).
Cellular senescence, a condition of permanent cell cycle arrest that is considered a safeguard mechanism preventing aged or abnormal cells from further expansion, has been found to increase the insulin-producing capability of pancreatic beta cells.

The cyclin-dependent kinase (CDK) p16Ink4a (cyclin-dependent kinase inhibitor 2A) is a tumor suppressor protein, which in humans is encoded by the CDKN2A gene. This gene is frequently mutated or deleted in a wide variety of tumors. p16Ink4a plays an important role in cell cycle regulation by slowing the progression from G1 phase to S phase, and is implicated in the prevention of cancers, notably melanoma, oropharyngeal squamous cell carcinoma, cervical cancer, and esophageal cancer. In addition, p16Ink4a is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized.

Investigators at the Hebrew University of Jerusalem (Israel) worked with transgenic mice and with human beta cells growing in culture. They reported in the March 7, 2016, online edition of the journal Nature Medicine that beta cell-specific activation of p16Ink4a in transgenic mice enhanced glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this led to improved glucose homeostasis, providing an unexpected functional benefit.

Expression of p16Ink4a in beta cells induced characteristics of senescence—including cell enlargement, greater glucose uptake, and increased mitochondrial activity—that promoted increased insulin secretion. GSIS increased during the normal aging of mice and was driven by elevated p16Ink4a activity. Furthermore, islets from human adults contained p16Ink4a-expressing senescent beta cells, and senescence induced by p16Ink4a in a human beta cell line increased insulin secretion.

“Senescence of cells is generally thought to represent a state in which cells lose their functionality, and contribute to tissue aging and disease. It was therefore very striking to observe that when beta cells enter this state during normal aging, the program allows them to function better, rather than worse,” said senior author Dr. Ittai Ben-Porath, senior lecturer in the department of developmental biology and cancer research at The Hebrew University of Jerusalem (Israel).

Related Links:

Hebrew University of Jerusalem


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.