We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Structural Studies Reveal Molecular Basis for Bacterial Motility in the Urinary Tract

By LabMedica International staff writers
Posted on 23 Mar 2016
Print article
Image: Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract (Photo courtesy of Maximilian Sauer, ETH Zürich).
Image: Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract (Photo courtesy of Maximilian Sauer, ETH Zürich).
A team of molecular microbiologists has unraveled the mechanism used by Escherichia coli bacteria to bind to cells lining the urinary tract and explained how the pathogen migrates to the bladder despite the strong force of urine flowing in the other direction.

E. coli attaches to host epithelia via the fimbrial adhesion FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins.

Investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) established a model system for fimbrial FimH function. A fimbril is a proteinaceous appendage in many gram-negative bacteria that is thinner and shorter than a flagellum.

The investigators revealed, in a paper published in the March 7, 2016, online edition of the journal Nature Communications, a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction, and molecular dynamics simulations. They found that FimH bound to sugar structures on the cell surface increasingly tightly the more it was pulled. As strong tensile forces developed during urination, FimH protected the bacteria from being flushed out. In the absence of tensile force, the FimH pilin domain allosterically accelerated spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity and allowing the bacteria to release from the cell surface and migrate in the direction of the bladder.

“Through the combination of several biophysical and biochemical methods, we have been able to elucidate the binding behavior of FimH in more detail than ever before”, said senior author Dr. Rudolf Glockshuber, professor of molecular biology and biophysics at ETH Zurich. “The protein FimH is composed of two parts, of which the second non-sugar binding part regulates how tightly the first part binds to the sugar molecule. When the force of the urine stream pulls apart the two protein domains, the sugar binding site snaps shut. However, when the tensile force subsides, the binding pocket reopens. Now the bacteria can detach and swim upstream the urethra.”

Related Links:
University of Basel
ETH Zurich


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.