We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanotechnology Advance Enables High-Resolution Structural Studies of Membrane Proteins

By LabMedica International staff writers
Posted on 23 Mar 2016
Print article
Image: Schematic of a Salipro nanoparticle. This technology may offer a wide range of potential applications, from structural biology to the discovery of new pharmacological agents (Photo courtesy of Jens Frauenfeld, Karolinska Institutet).
Image: Schematic of a Salipro nanoparticle. This technology may offer a wide range of potential applications, from structural biology to the discovery of new pharmacological agents (Photo courtesy of Jens Frauenfeld, Karolinska Institutet).
A novel nanotechnology advance in the field of protein structural analysis allows for the isolation and reconstitution of membrane proteins in a lipid environment where they can by analyzed in their native state.

Membrane proteins are the targets of more than 60% of drugs in clinical use. However, a limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies.

Investigators at Karolinska Institutet (Stockholm, Sweden) recently described a saposin-lipoprotein nanoparticle system, which they called Salipro. This system allowed for the reconstitution of membrane proteins in a lipid environment that was stabilized by a scaffold of saposin proteins.

The investigators demonstrated the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. This approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and enabled the stabilization of the HIV envelope glycoprotein in a functional state.

Cryo-EM is an analytical technique complementary to NRM and X-ray diffraction crystallography that provides near-atomic resolution without the requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

"To our knowledge, the HIV spike protein preparation presented in the study using the Salipro system represents the first approach that allows the stabilization of the HIV-1 spike, including the important membrane domains, in a soluble and functional state", said senior author Dr. Pär Nordlund professor of oncology-pathology at Karolinska Institutet.

The paper describing the Salipro system was published in the March 7, 2016, online edition of the journal Nature Methods.

Related Links:

Karolinska Institutet


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.