We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomaterial Scaffolds Boost Interleukin Production to Promote Wound Healing

By LabMedica International staff writers
Posted on 29 Apr 2016
Print article
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
The improved wound healing promoted by use of "biomaterial" scaffolds was shown to be due to activation of the immune system's T helper II pathway with a subsequent increase in production of interleukins.

Biomaterial scaffolds derived from cardiac muscle and bone extracellular matrix components help to guide regenerating tissue. Investigators at Johns Hopkins University (Baltimore, MD, USA) tested how such biomaterial scaffolds interact with the immune system in damaged tissue to promote repair.

They reported in the April 15, 2016, issue of the journal Science that scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper II pathway that guided interleukin-4 (IL4) – dependent macrophage polarization, which was critical for functional muscle recovery. Mice that had been genetically engineered to lack T-cells did not activate interleukin production or heal as well as normal mice.

"In previous research, we have seen different immune system responses to the same biomaterial implanted in different tissues or environments, and that got us interested in how biomaterials might stimulate the immune system to promote regeneration," said senior author Dr. Jennifer Elisseeff, professor of ophthalmology and biomedical engineering at Johns Hopkins University. "We still have a lot to learn, but this study is a step toward designing materials to elicit a beneficial immune response."

Related Links:
Johns Hopkins University

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.