We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Pair Acts in Tandem to Drive Aggressive Brain Cancer Growth

By LabMedica International staff writers
Posted on 09 May 2016
Print article
Image: A photomicrograph of human brain tumor stem cells expressing the OSMR gene (green) (Photo courtesy of Dr. Arezu Jahani-Asl, McGill University).
Image: A photomicrograph of human brain tumor stem cells expressing the OSMR gene (green) (Photo courtesy of Dr. Arezu Jahani-Asl, McGill University).
A pair of genes has been identified that work in tandem to drive the growth and development of the glioblastoma multiforme (GBM) type of aggressive brain tumor.

This form of brain cancer is the most common primary tumor of the central nervous system and is almost always fatal. The aggressive invasion of GBM cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to eight months for patients with recurrent GBM.

Investigators at McGill University (Montreal, Canada), the Harvard University Medical School (Boston, MA, USA) and the Washington University School of Medicine (St. Louis, MO, USA) were searching for genes that would complement the activity of EGFR (epidermal growth factor receptor)vIII, which was known to produce an important tumor-forming protein in glioblastoma. However, disabling EGFRvIII had not been found to be effective in blocking growth of GBM.

The investigators reported in the April 25, 2016, online edition of the journal Nature Neuroscience that they had identified the cytokine receptor OSMR (oncostatin M receptor) as a direct target gene of the transcription factor STAT3 in mouse astrocytes and human brain tumor stem cells, and that OSMR functioned as an essential co-receptor for EGFRvIII.

The cellular transcription factor STAT3 (signal transducer and activator of transcription 3) is a member of the STAT protein family, which regulates many aspects of cell growth, survival, and differentiation. Malfunction of this signaling pathway is frequently observed in primary tumors and leads to increased angiogenesis and enhanced tumor survival.

The investigators found that OSMR formed a physical complex with EGFRvIII and that depletion of OSMR impaired EGFRvIII-STAT3 signaling. Conversely, drugs that inhibited EGFRvIII phosphorylation also inhibited the EGFRvIII-OSMR interaction and activation of STAT3. EGFRvIII-OSMR signaling in tumors operated constitutively, whereas EGFR-OSMR signaling in normal cells was synergistically activated by the ligands EGF and OSM.

Genetic knockdown of OSMR strongly suppressed mouse glioblastoma cell proliferation and tumor growth as well as growth of human brain tumor stem cell xenografts in mice, and prolonged the lifespan of these animals.

“The discovery has important clinical implications,” said senior author Dr. Azad Bonni, professor of neurobiology at the Washington University School of Medicine. “It provides a new therapeutic avenue for treating this devastating disease, though developing any effective therapy targeting human patients could be years of work.”

Related Links:
McGill University
Harvard University Medical School
Washington University School of Medicine
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.