We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutant Protein Aggregates Drive Progression of ALS in Mouse Model

By LabMedica International staff writers
Posted on 16 May 2016
Print article
Image: Aggregated SOD1 protein can be seen as green dots in the cell fluid of a motor neuron in the spinal cord of an ALS patient. The red area is the nerve cell nucleus (Photo courtesy of Peter Andersen, Umeå University).
Image: Aggregated SOD1 protein can be seen as green dots in the cell fluid of a motor neuron in the spinal cord of an ALS patient. The red area is the nerve cell nucleus (Photo courtesy of Peter Andersen, Umeå University).
Researchers working with a mouse model of amyotrophic lateral sclerosis (ALS) have demonstrated that aggregates of mutated superoxide dismutase 1 (SOD1) can propagate the disease by progressing through nerve cells along the animal's spinal cord.

ALS is a specific disorder that involves the death of neurons. The disease, for which there is no cure, is characterized by stiff muscles, muscle twitching, and gradually worsening weakness due to muscles decreasing in size. Most ALS sufferers die from respiratory failure.

It has been shown that at the molecular level ALS was frequently caused by mutations in the gene encoding SOD1. Both patients and Tg mice expressing mutant human SOD1 (hSOD1) developed aggregates of unknown importance. In Tg mice, two different strains of hSOD1 aggregates (denoted A and B) have been identified; however, the role of these aggregates in disease pathogenesis has not been fully characterized.

Investigators at Umeå University (Sweden) prepared A and B hSOD1 strain aggregates by centrifugation through a density cushion. They then inoculated minute seeds of these substances into the lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg mutation.

Results published in the May 3, 2016, online edition of the Journal of Clinical Investigation revealed that mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which was 200 days earlier than for mice that had not been inoculated or were given a control preparation. At the same time, exponentially growing strain A and B hSOD1 aggregations propagated throughout the spinal cord and brainstem, which resulted in the eventual death of the mice.

"The occurrence of SOD1 aggregates in nerve cells in ALS patients has been known for a while," said senior author Dr. Thomas Brännström, professor of pathology at Umeå University. "But it has long been unclear what role the SOD1 aggregates play in the disease progression in humans carrying hereditary traits for ALS. We have now been able to show that the SOD1 aggregates start a domino effect that rapidly spreads the disease up through the spinal cord of mice. We suspect that this could be the case for humans as well."

Related Links:
Umeå University

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Chlamydia Test Kit
CHLAMYTOP
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.