We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Antibodies against Complement Factor H Selectively Destroy Tumor Cells

By LabMedica International staff writers
Posted on 17 May 2016
Print article
Image: Molecular structure of factor H bound to C3b. In order to avoid self-attack, regulatory proteins such as factor H bind with C3b, a central component of the enzyme C3 convertase, to help the immune system recognize the body’s own tissue and keep complement in check (Photo courtesy of the University of Pennsylvania School of Medicine).
Image: Molecular structure of factor H bound to C3b. In order to avoid self-attack, regulatory proteins such as factor H bind with C3b, a central component of the enzyme C3 convertase, to help the immune system recognize the body’s own tissue and keep complement in check (Photo courtesy of the University of Pennsylvania School of Medicine).
Cancer researchers have identified and produced a monoclonal antibody that destroys tumor cells by blocking the activity of the protective protein complement factor H (CFH).

Investigators at Duke University (Durham, NC, USA) had reported previously an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. Patients with stage I NSCLC (non-small cell lung cancer) had a significantly higher incidence of anti-CFH antibody than those with late-stage NSCLC. This association led to the hypothesis that CFH antibodies that arise in lung cancer patients may promote anti-tumor cell activity and that CFH antibody administration might provide a unique way to stimulate a long-term immune response and treat cancer.

CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. CHF is a member of the regulators of complement activation family and is a complement control protein. It is a large (155 kilodaltons), soluble glycoprotein that circulates in human plasma (at typical concentrations of 200–300 micrograms per milliliter). Its principal function is to regulate the Alternative Pathway of the complement system, ensuring that the complement system is directed towards pathogens or other dangerous material and does not damage host tissue.

In the current study the investigators isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B-cells obtained from patients with the antibody.

They reported in the May 5, 2016, online edition of the journal Cell Reports that the co-crystal structure of a CFH antibody-target complex showed a conformational change in the target relative to the native structure. This recombinant CFH antibody caused complement activation and release of anaphylatoxins, killed tumor cells in vitro, and inhibited tumor growth in vivo.

"This is the first completely human-derived antibody developed as an anti-cancer therapy, which is very different from other immunotherapy approaches," said senior author Dr. Edward F. Patz, Jr., professor of pharmacology and cancer biology at Duke University. "This could represent a whole new approach to treating cancer, and it is exciting because the antibody selectively kills tumor cells, so we do not have significant side effects to achieve tumor control. We believe we can modulate the immune response and let the body's own immune system take over to either kill the tumor or keep it from growing."

Related Links:
Duke University

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.