We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Multiple Myeloma Mouse Model Should Advance Drug Development Efforts

By LabMedica International staff writers
Posted on 18 May 2016
Print article
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
A recently developed multiple myeloma mouse model is expected to aid in understanding the pathology of the disease and serve as a platform for preclinical testing of potential therapeutic agents.

Investigators at the University of Miami School of Medicine (FL, USA) created the model by crossing two lines of genetically engineered mice. The first line (Mef−/−) lacked the gene for the transcription factor Mef (Elf4), which is known to both promote and suppress the formation of cancers. The second line (Rad50s) contained a mutation in a component of a sensor of DNA damage and regulator of DNA damage response pathways.

The investigators reported in the March 10, 2016, online edition of the journal Scientific Reports that about 70% of the hybrid Mef−/−Rad50s/s mice died from multiple myeloma or other plasma cell cancers.

These mice initially showed an abnormal plasma cell proliferation and monoclonal protein production, and then developed anemia and a decreased bone mineral density. Tumor cells could be serially transplanted. Genome mapping and whole exome sequencing revealed that the pathogenesis of plasma cell cancers in these mice was not linked to activation of a specific oncogene, or inactivation of a specific tumor suppressor (except Mef).

"Multiple myeloma is the second most common hematologic malignancy in the U.S. and it is a very complex disease," said senior author Dr. Stephen D. Nimer, professor of medicine, biochemistry, and molecular biology at the University of Miami School of Medicine. "So far, there have not been animal models of malignant plasma-cell diseases that allow us to study their stepwise progression and fully understand the complex cellular mechanisms. Now that we have a proper model of the disease, we will be able to more effectively study multiple myeloma as well as potential treatments."

"Although outcomes for multiple myeloma patients have greatly improved, it remains an incurable disease, despite the availability of newer treatments," said Dr. Nimer. "Several animal models of multiple myeloma have been reported, including models of human myeloma cells. However, these models imperfectly mimic the human disease. Developing more-reliable and accurate animal models that help us better understand myeloma and test new treatments will take us to the next level on the long and challenging road to a cure."

Related Links:
University of Miami School of Medicine


Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.