We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Class of Drugs Selectively Kills HER2-positive Breast Cancer Cells

By LabMedica International staff writers
Posted on 16 Jun 2016
Print article
Image: The new active ingredient consists of DARPins (red and orange) that bend the HER2 receptors (blue) so no more growth signal is transmitted into the cell interior (below the cell membrane in yellow) (Photo courtesy of the University of Zurich).
Image: The new active ingredient consists of DARPins (red and orange) that bend the HER2 receptors (blue) so no more growth signal is transmitted into the cell interior (below the cell membrane in yellow) (Photo courtesy of the University of Zurich).
A team of Swiss drug developers has designed a novel drug that cures breast cancer by completely blocking the activity of the surface receptor HER2 (human epidermal growth factor receptor 2).

Current antibody-based drugs for the treatment of breast cancer such as trastuzumab and pertuzumab slow tumor growth without destroying the cancer cells. While the drugs block some HER2 activity, the receptor is able to access several signaling pathways at the same time. The drugs block only one of these pathways, while the others remain active.

To solve this problem, investigators at the University of Zurich (Switzerland) designed a protein compound capable of binding simultaneously to two HER2 receptors in a targeted manner. This attachment changed the spatial structure of the receptors and prevented growth signals from being transmitted into the cell interior, resulting in death of the cancer cells.

The new drug was a result of advances in DARPin (designed ankyrin repeat proteins) technology. DARPins are genetically engineered antibody mimetic proteins typically exhibiting highly specific and high-affinity target protein binding. They are derived from natural ankyrin repeat proteins. Repeat proteins are among the most common classes of binding proteins in nature, responsible for diverse functions such as cell signaling and receptor binding. DARPins constitute a new class of potent, specific, and versatile small-protein therapies, and are used as investigational tools in various therapeutic and diagnostic applications.

The investigators reported in the June 3, 2016, online edition of the journal Nature Communications that their DARPin drug not only selectively killed HER2-positive breast cancer cells; it did so without harming normal cells in the body.

"It is this [RAS] protein that is responsible for reactivating the growth signal emitted by the HER2 receptor. The antibodies lose effect and the cancer cells continue to proliferate," said senior author Dr. Andreas Plückthun, professor of biochemistry at the University of Zurich. "Now that we have identified the Achilles heel of HER2-positive cancer cells, new opportunities are opening up for treating invasive tumor types like breast cancer more effectively in the future".

The future potential of DARPin technology is being evaluated by the biotechnology firm Molecular Partners (Zurich, Switzerland), a spin-off company of the University of Zurich.

Related Links:
University of Zurich
Molecular Partners
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.