We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cell-Based Model System to Boost Research on Nonalcoholic Fatty Liver Disease

By LabMedica International staff writers
Posted on 12 Jul 2016
Print article
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
A team of German liver disease researchers created an in vitro model of nonalcoholic fatty liver disease (NAFLD) using induced pluripotent stem cells that had been differentiated into hepatocyte-like cells.

NAFLD or steatosis is a metabolic disease characterized by the incorporation of fat into hepatocytes. Initially it is a benign state, but it can progress to NASH /steatohepatitis, an inflammatory disease of the liver that can lead to fibrosis, cirrhosis, or even liver cancer. Lack of a suitable in vitro model system has slowed research on NAFLD.

This situation has been corrected by investigators at Heinrich-Heine University Duesseldorf (Germany). They reported in the June 16, 2016, online edition of the journal Stem Cells and Development that they had developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. They induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes as well as an overall reduction of liver related microRNAs. MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. MicroRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators observed up-regulation of the lipid droplet coating protein Perilipin 2 (PLIN2) as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. This model recapitulated many metabolic changes that are characteristic for NAFLD. For example, interference with PLIN2 and PPARalpha resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism.

"Although our hepatocyte-like cells are not fully mature, they are already an excellent model system for the analysis of such a complex disease," said first author Dr. Nina Graffmann, a postdoctoral researcher at Heinrich-Heine University Duesseldorf. "In our system, we can efficiently induce lipid storage in hepatocyte-like cells and manipulate associated proteins or microRNAs by adding various factors into the culture. Thus, our in vitro model offers the opportunity to analyze drugs which might reduce the stored fat in hepatocytes."

Related Links:
Heinrich-Heine University Duesseldorf


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.