Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Alzheimer's Disease Mouse Model Links Beta-Amyloid Deposits to Tau Protein Hyperphosphorylation

By LabMedica International staff writers
Posted on 14 Jul 2016
Neurodegenerative disease researchers have created a genetically engineered mouse model of Alzheimer's disease that is expected to facilitate the study of the molecular mechanisms that underlie the disorder.

A central question in Alzheimer’s disease (AD) is whether the neuritic plaque is necessary and sufficient for the development of tau pathology. More...
Hyperphosphorylation of all six tau protein isoforms can result in the self-assembly of tangles of paired helical filaments and straight filaments, which are involved in the pathogenesis of Alzheimer's disease and other tauopathies. When misfolded, this otherwise very soluble protein can form extremely insoluble aggregates that contribute to a number of neurodegenerative diseases.

Hyperphosphorylation of the tau protein has been demonstrated within neurites surrounding beta-amyloid deposits in AD mouse models, but the pathological conversion of tau was absent. Likewise, expression of a human tau repeat domain in mice was not sufficient to drive the pathological conversion of tau.

To develop a better understanding of how tau hyperphosphorylation was linked to beta-amyloid neuritis, investigators at Johns Hopkins University (Baltimore, MD, USA) genetically engineered an A-beta-amyloidosis mouse model that expressed the human tau repeat domain.

The investigators found that in these mice, the neuritic plaque facilitated the pathological conversion of wild-type tau. They showed that this tau fragment seeded the neuritic plaque-dependent pathological conversion of wild-type tau that spread from the cortex and hippocampus to the brain stem. These results established that in addition to the neuritic plaque, a second determinant was required to drive the conversion of wild-type tau.

"In Alzheimer's disease, tau bunches up inside the nerve cells and beta-amyloid clumps up outside these cells, mucking up the nerve cells controlling memory," said senior author Dr. Philip C. Wong, professor of pathology at Johns Hopkins University. "For the first time, we think we understand that the accumulation of amyloid plaque alone can damage the brain, but that is actually not sufficient to drive the loss of nerve cells or behavioral and cognitive changes. What appears to be needed is a second insult - the conversion of tau - as well."

Related Links:
Johns Hopkins University



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.