We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multitiered Molecular Control Mechanism Regulates T-cell Genetic Switch

By LabMedica International staff writers
Posted on 27 Jul 2016
Print article
Image: Cells labeled to identify proteins that regulate the expression of a genetic switch for T-cells. On the right, T-cells where the switch is activated glow in yellow. On the left, the rainbow pattern, a hierarchical cluster analysis, tells investigators which genes are controlled by the switch. The horizontal stripes are the genes. If they stripes turn red going from left to right, it means they are turning on; if they turn blue, the genes are turning off (Photo courtesy of the California Institute of Technology).
Image: Cells labeled to identify proteins that regulate the expression of a genetic switch for T-cells. On the right, T-cells where the switch is activated glow in yellow. On the left, the rainbow pattern, a hierarchical cluster analysis, tells investigators which genes are controlled by the switch. The horizontal stripes are the genes. If they stripes turn red going from left to right, it means they are turning on; if they turn blue, the genes are turning off (Photo courtesy of the California Institute of Technology).
Three distinct molecular processes act in a stage-specific manner to provide a multitiered system for regulating the T-cell developmental gene BCL11B (B-cell CLL/Lymphoma 11B).

During T-cell development, multipotent progenitors commit to the T-cell lineage by turning on the BCL11B gene, which encodes a transcription factor. To identify the factors responsible for controlling the commitment mechanism, investigators at the California Institute of Technology (Pasadena, USA) followed developing T-cells at the single-cell level using mice genetically engineered to express a fluorescent protein in addition to their own Bcl11b protein. This caused the mouse cells to glow under the fluorescent microscope when the BCL11B gene was activated.

Results published in the July 4, 2016, online edition of the journal Nature Immunology revealed that a group of four protein transcription factors cooperated in a series of multi-tiered steps to regulate the T-cell genetic switch.

Initially, the proteins HNF1 homeobox A (HNF1A; also known as TCF1) and GATA binding protein 3 (GATA3) performed an early locus "poising" function, which paved the way for the activation step. Next, Notch protein signaling activated BCL11B. The fourth protein, Runt-related transcription factor 1 (Runx1) controlled the amplitude of the signal.

"We identify the contributions of four regulators of BCL11B, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on," said senior author Dr. Ellen Rothenberg, professor of biology at the California Institute of Technology. "It is interesting - the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order. This makes the gene respond not only to the cell's current state, but also to the cell's recent developmental history."

Related Links:
California Institute of Technology


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.