We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Snail Insulin Serves as Drug Development Model

By LabMedica International staff writers
Posted on 22 Sep 2016
Print article
Image: Comparison of the structures of insulin in Conus geographus (red/white) and in humans (blue/white and green). The green B-chain terminal segment is absent in the C. geographus insulin (Photo courtesy of Dr. Mike Lawrence).
Image: Comparison of the structures of insulin in Conus geographus (red/white) and in humans (blue/white and green). The green B-chain terminal segment is absent in the C. geographus insulin (Photo courtesy of Dr. Mike Lawrence).
A form of insulin isolated from a type of carnivorous marine snail lacks the segment of the B region that causes the protein to aggregate, which decreases the amount of time required by the hormone to influence glucose levels by a factor of three.

Insulin in the venom of certain fish-hunting cone snails facilitates the capture of prey by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone's hexameric storage form.

Investigators at the University of Utah (Salt Lake City, USA) reported in the September 12, 2016, online edition of the journal Nature Structural & Molecular Biology that Con-Ins G1 acted as a naturally occurring B-chain-minimized mimetic of human insulin that strongly attached to the human insulin receptor and activated receptor signaling.

The crystal structure of Con-Ins G1 revealed a tertiary structure highly similar to that of human insulin. In addition, the crystal structure suggested that Con-Ins G1 could begin working in as few as five minutes, compared with 15 minutes for the fastest-acting insulin currently available.

"Studying the structure of the cone snail insulin could help researchers modify human insulin to lose its self-aggregation but retain its potency," said contributing author Dr. Helena Safavi, professor of biology at the University of Utah. "Now we can look at the human insulin and see if we can make it more snail-like. People think it is easy to make drugs, but where do you start? You have to have some kind of idea of what a drug should look like, what kind of properties the drug should have, so it is very difficult to design novel drugs. That is why we use the snail venom system."

Related Links:
University of Utah


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.