We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Critical Final Step in Parthanatos Pathway Identified

By LabMedica International staff writers
Posted on 18 Oct 2016
Print article
Image: The nucleus of a cell undergoing parthanatos (Photo courtesy of Yingfei Wang and I-Hsun Wu, Johns Hopkins University).
Image: The nucleus of a cell undergoing parthanatos (Photo courtesy of Yingfei Wang and I-Hsun Wu, Johns Hopkins University).
A team of neurological disease researchers has identified the enzyme responsible for the last link in a chain of molecular steps that constitutes the cell death pathway called parthanatos.

Parthanatos is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. While necrosis is caused by acute cell injury resulting in traumatic cell death, and apoptosis is a highly controlled process signaled by apoptotic intracellular signals, parthanatos is caused by the accumulation of PAR (Poly(ADP-ribose)) and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. The PARP-1 (Poly(ADP-ribose) polymerase-1) enzyme mediates parthanatos under circumstances in which it becomes over-activated in response to extreme genomic stress and synthesizes PAR, which causes nuclear translocation of AIF. Parthanatos is involved in several well-known diseases including Parkinson’s disease, stroke, heart attack, and diabetes.

Investigators at Johns Hopkins University (Baltimore, MD, USA) reported in the October 7, 2016, issue of the journal Science that they had used two sequential unbiased screens, including a human protein array and a small interfering RNA screen to discover that macrophage migration inhibitory factor (MIF) bound AIF and was required for parthanatos. In the presence of magnesium or calcium ions, MIF possessed both 3′ exonuclease and endonuclease activity. It bound to 5′ unpaired bases of single-stranded DNA with stem loop structure and cleaved its 3′ unpaired bases. These nuclease activities allowed MIF to cleave genomic DNA into large fragments.

Depletion of MIF markedly reduced cell death induced by N-methyl-d-aspartate (NMDA) receptor–activated glutamate toxicity in primary neuronal cultures as well as DNA damage caused by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or focal stroke in mice. Mutating key amino acid residues in the nuclease domain of MIF eliminated its nuclease activity and prevented parthanatos. In addition, disrupting the AIF and MIF interaction prevented the translocation of MIF from the cytosol to the nucleus and protected against parthanatos. . Therefore, targeting MIF nuclease activity may offer an important therapeutic opportunity for a variety of disorders with excessive PARP-1 activation.

"We found that AIF binds to MIF and carries it into the nucleus, where MIF chops up DNA," said senior author Dr. Ted Dawson, director of the institute for cell engineering at Johns Hopkins University. "We think that is the final execution step in parthanatos. I cannot overemphasize what an important form of cell death it is; it plays a role in almost all forms of cellular injury. We are interested in finding out whether MIF is also involved in Parkinson's, Alzheimer's, and other neurodegenerative diseases. If so, and if an inhibitor of MIF proves successful in testing, it could have implications for treating many conditions."

Related Links:
Johns Hopkins University

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.