We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Identified Prevents Systemic Lupus Erythematosus

By LabMedica International staff writers
Posted on 11 Nov 2016
Print article
Image: The RNA-protein complex Sm/RNP, which is released from dead cells, stimulates B-cells capable of producing anti-Sm/RNP antibody (anti-Sm/RNP B lymphocytes). The resulting anti-Sm/RNP antibody induces development of systemic lupus erythematosus (SLE) by forming immune complexes together with Sm/RNP (Photo courtesy of the Department of Immunology, Tokyo Medical and Dental University).
Image: The RNA-protein complex Sm/RNP, which is released from dead cells, stimulates B-cells capable of producing anti-Sm/RNP antibody (anti-Sm/RNP B lymphocytes). The resulting anti-Sm/RNP antibody induces development of systemic lupus erythematosus (SLE) by forming immune complexes together with Sm/RNP (Photo courtesy of the Department of Immunology, Tokyo Medical and Dental University).
A protein has been identified that functions to prevent the immune system from generating the autoimmune response responsible for lupus erythematosus, a disease associated with inflammation of various organs including kidney, brain, skin, heart, and lung.

Toll-like receptor 7 (TLR7) is a protein that plays an essential role in development of the autoimmune diseases systemic lupus erythematosus (SLE) by co-stimulating B-cells reactive to the endogenous TLR7 ligand Sm/ribonucleoprotein (RNP), a crucial lupus self-antigen. However, how the TLR7-mediated autoimmune response is regulated is not yet known.

To better understand the molecular mechanism that underlies SLE, investigators at Tokyo Medical and Dental University (Japan) genetically engineered mouse immune cells to modify or eliminate the inhibitory B-cell co-receptor protein CD72, which had been previously shown to prevent development of SLE.

They reported in the October 24, 2016, online edition of the Journal of Experimental Medicine that CD72 recognized Sm/RNP at the extracellular C-type lectin-like domain (CTLD) and specifically inhibited B-cell response to Sm/RNP. Moreover, the CTLD of CD72c, a lupus-susceptible allele, bound to Sm/RNP less strongly than that of lupus-resistant CD72a.

Reduced binding of CD72c was supported by x-ray crystallographic analysis that revealed a considerable alteration in charge at the putative ligand-binding site. Thus, CD72 appeared to specifically inhibit B-cell response to the endogenous TLR7 ligand Sm/RNP through CTLD-mediated recognition of Sm/RNP, thereby preventing production of anti-Sm/RNP antibody crucial for development of SLE.

"When we knocked out CD72 in mouse B-cells, they were specifically stimulated by the self-antigen Sm/RNP and released antibodies against this antigen," said senior author Dr. Takeshi Tsubata professor of immunology at Tokyo Medical and Dental University. "The lack of CD72 meant that another receptor on B-cells could bind to Sm/RNP, which activated the B-cells and led to the symptoms of SLE. We now know that CD72 prevents immune responses, which lead to SLE without affecting responses to microbes and cancer cells. If we can develop a method to augments capability of CD72, this will treat patients with SLE without unwanted effects."

Related Links:
Tokyo Medical and Dental University

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Tabletop Centrifuge
Mikro 185
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.