We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Drug Treatments to Target Pneumocystis Dependence on Inositol Transport

By LabMedica International staff writers
Posted on 29 Dec 2016
Print article
Image: Pneumocystis jirovecii is present in this lung impression smear, using Giemsa stain. This fungus is arguably the most important cause of pneumonia in the immunocompromised human host (Photo courtesy of the CDC).
Image: Pneumocystis jirovecii is present in this lung impression smear, using Giemsa stain. This fungus is arguably the most important cause of pneumonia in the immunocompromised human host (Photo courtesy of the CDC).
A recent paper suggested that the Pneumocystis fungus, a dangerous pathogen that causes pneumonia in HIV patients and other immunocompromised individuals, could be targeted by drugs that would block its inositol transport mechanism.

Pneumocystis fungi are resistant to most currently prescribed anti-fungal therapies. Furthermore, the gold standard, trimethoprim sulfamethoxazole, often causes serious allergic reactions in many patients.

Inositol is a sugar alcohol. Its taste has been assayed at half the sweetness of table sugar (sucrose). The most common structural form of inositol, myo-inositol, plays an important role as the structural basis for a number of secondary messengers in eukaryotic cells, the various inositol phosphates. In addition, inositol serves as an important component of the structural lipids phosphatidylinositol (PI) and its various phosphates, the phosphatidylinositol phosphate (PIP) lipids.

Humans and microbes alike can obtain inositol by making it, which involves only two enzymes, by taking it from the environment by a transport process, or by recycling it from other cellular constituents. Inspection of the genomes of the pathogenic fungi of the genus Pneumocystis showed that these pneumonia-causing parasites could not make myo-inositol, as they lacked the two enzymes.

Investigators at the University of Cincinnati (OH, USA), who were studying Pneumocystis, found evidence of inositol transporters, which imported the sugar from the lungs where the fungi resided. In the present report, which was published in the December 13, 2016, online edition of the journal, MBio, they characterized the transport of myo-inositol in the fungus and found that the transporter was highly selective for myo-inositol and did not transport any other molecules.

The inositol transport system was distinct from that in mammalian cells, and since mammals can both make and transport myo-inositol, while Pneumocystis fungi must transport it, this process offered a potential new drug target.

"Identifying a drug to inhibit the transporter will kill these fungi because they cannot synthesize inositol as they lack two enzymes to do so," said first author Dr. Melanie T. Cushion, professor of internal medicine at the University of Cincinnati. "The transporters in humans and Pneumocystis are sufficiently different that inhibitors of the fungal transporter are not likely to impact the mammalian transporters. If that is the case, no toxicity is expected with this new line of drugs."

Related Links:
University of Cincinnati

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.