We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Dual-Action Drug Blocks Carcinogenic MYC Oncogene Activity

By LabMedica International staff writers
Posted on 14 Feb 2017
Print article
Image: The crystal structure of the Myc protein in complex with DNA (Photo courtesy of Wikimedia Commons).
Image: The crystal structure of the Myc protein in complex with DNA (Photo courtesy of Wikimedia Commons).
A novel dual-action, low molecular weight drug suppresses the effects of the MYC cancer gene by blocking the action of two key regulatory proteins.

MYC is a regulator gene that codes for a transcription factor. The protein encoded by this gene (Myc) is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis, and cellular transformation. A mutated version of MYC is found in many cancers, which causes Myc to be continually expressed. This leads to the unregulated expression of many genes, some of which are involved in cell proliferation, and results in the formation of cancer. Despite the recognition of the role of MYC in cancer, it has proven to very difficult to develop drugs to regulate its activity.

In this regard, investigators at the University of California, San Diego and collaborators at the University of Colorado School of Medicine, and the biopharmaceutical company SignalRx developed a novel dual-action inhibitor that blocks the activity of two key MYC-mediating factors, Phosphoinositide 3-kinase (PI3K) and Bromodomain-containing protein 4 (BRD4).

The investigators reported in the January 30, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Science that they had used molecular modeling crystal structure and nuclear magnetic resonance imaging, to design a new low molecular weight drug (SF2523) that simultaneously disrupted the two key MYC-mediating factors PI3K and BRD4.

Working with cell culture and mouse models, the investigators showed that the simultaeous inhibition of PI3K and BRD4 blocked MYC expression and activation, promoted MYC degradation, and markedly inhibited cancer cell growth and metastasis.

"Most anti-cancer drugs have a single target. They try to do one thing, such as block a single receptor or signaling pathway," said contributing author Dr. Donald L. Durden, professor of pediatrics at the University of California, San Diego. "This paper is proof-of-concept of a completely different mode of drug discovery clearly separated from the standard practice of one drug, one target. This is a "'first in class" approach to achieve a maximum inhibition of MYC in the treatment of the multitude of cancers known to be driven by the MYC oncogene. These findings suggest that dual-activity inhibitors are a highly promising lead compound for developing new anticancer therapeutics."

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.