We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Labels Simplify Development of Drug Delivery Nanoparticles

By LabMedica International staff writers
Posted on 21 Feb 2017
Print article
Image: A close-up image of a microfluidic chip used to fabricate nanoparticles that could be used to deliver therapeutic genes to specific organs of the body. Colored liquids have been added to highlight the channels (Photo courtesy of Rob Felt, Georgia Institute of Technology).
Image: A close-up image of a microfluidic chip used to fabricate nanoparticles that could be used to deliver therapeutic genes to specific organs of the body. Colored liquids have been added to highlight the channels (Photo courtesy of Rob Felt, Georgia Institute of Technology).
A team of biomedical engineers developed a method for labeling potential drug delivery nanoparticles with DNA "barcodes," which allowed the tracing of the nanoparticles within living test animals.

The effectiveness of nucleic acid drugs is limited by inefficient delivery to target tissues and cells and by unwanted accumulation in off-target organs. Although thousands of chemically distinct nanoparticles can be synthesized, nanoparticles designed to deliver nucleic acids in vivo were first tested in cell culture, yielding poor predictions for delivery in vivo. To facilitate testing of many nanoparticles in vivo, investigators at the Georgia Institute of Technology the University of Florida and the Massachusetts Institute of Technology designed and optimized a high-throughput DNA barcoding system to simultaneously measure nucleic acid delivery mediated by dozens of distinct nanoparticles in a single mouse.

The "barcodes" were short (approximately 58 nucleotides long) stretches of DNA, in the same size range as antisense oligonucleotides, microRNAs, and siRNAs (short inhibiting RNAs). A unique DNA barcode sequence was inserted into each type of nanoparticle carrier to be tested. The nanoparticles were injected into mice, whose organs were then examined for presence of the barcode using standard gene mapping techniques.

The investigators reported in the February 6, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that the method distinguished previously characterized lung- and liver- targeting nanoparticles and accurately reported relative quantities of nucleic acid delivered to tissues. Barcode sequences did not affect delivery, and no evidence of particle mixing was observed for tested particles. By measuring the bio-distribution of 30 nanoparticles to eight tissues simultaneously, they identified chemical properties promoting delivery to some tissues relative to others. Finally, particles that distributed to the liver also silenced gene expression in hepatocytes when formulated with siRNA.

"We want to understand at a very high level what factors affecting nanoparticle delivery are important," said first author Dr. James Dahlman, assistant professor of biomedical engineering at the Georgia Institute of Technology. "This new technique not only allows us to understand what factors are important, but also how disease factors affect the process. Nucleic acid therapies hold considerable promise for treating a range of serious diseases. We hope this technique will be used widely in the field, and that it will ultimately bring more clarity to how these drugs affect cells -- and how we can get them to the right locations in the body."

"In future work, we are hoping to make a thousand particles and instead of evaluating them three at a time, we would hope to test a few hundred simultaneously," said Dr. Dahlman. "Nanoparticles can be very complicated because for every biomaterial available, you could make several hundred nanoparticles of different sizes and with different components added."

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.