We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Culture Method for Activation of Cancer-Fighting T-Cells

By LabMedica International staff writers
Posted on 02 Mar 2017
Print article
Image: A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer\'s immunosuppressive effect (Photo courtesy of the Mayo Clinic).
Image: A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer\'s immunosuppressive effect (Photo courtesy of the Mayo Clinic).
A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer's immunosuppressive effect in order to recognize and attack tumor cells upon being returned to the body.

Development of effective adoptive immunotherapy for many types of human cancer has been slow, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. Investigators at the Mayo Clinic and the University of Washington hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection.

To examine this theory, they subjected unfractionated peripheral blood mononuclear cells (PBMC) to a two-step culture regimen, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by gamma-chain cytokine-modulated T-cell hyperexpansion.

In the first step, the PBMC culture was treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus paired Toll-like receptor agonists (resiquimod and LPS), which stimulated abundant IL-12 and IL-23 secretion. At this point the culture was exposed to various tumor antigens including MUC1 (Mucin 1, cell surface associated), a protein expressed by a large majority of cancers, including breast, pancreatic, lung, colorectal, ovarian, kidney, bladder, and multiple myeloma. Also included were HER2/neu (human epidermal growth factor receptor 2), a protein present in one-quarter to half of many types of cancer, and CMVpp65, a protein present in half of primary brain tumors.

In the second step, exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-gamma-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. The investigators reported in the February 14, 2017, issue of the journal Oncotarget that it only took about three weeks to grow out cultures of natural T- cells able to recognize and target cancers expressing these proteins.

“Even though it is relatively easy to collect billions of T-cells directly from patient blood, it has historically proved difficult or impossible to unleash those T-cells’ natural ability to recognize and target cancer cells,” said senior author Dr. Peter Cohen, an immunotherapist at the Mayo Clinic. “We are pleased to help other investigators implement our culture method for their own cancer-associated proteins of interest.”

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.