We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Black Carbon Nanoparticles Modify Pathogens and Affect Resistance

By LabMedica International staff writers
Posted on 14 Mar 2017
Print article
Image: A photomicrograph showing Streptococcus pneumoniae with black carbon (Photo courtesy of the University of Leicester).
Image: A photomicrograph showing Streptococcus pneumoniae with black carbon (Photo courtesy of the University of Leicester).
Nanoparticles of black carbon, one of the main components of air pollution, have been found to modify the way bacterial pathogens grow in vitro and in vivo and to significantly increase their resistance to treatment with certain antibiotics.

While the effects of the particulate matter in air pollution on human health are well established, the effects on bacteria – organisms central to ecosystems in humans and in the natural environment – are poorly understood.

To fill this gap, investigators at the University of Leicester examined the effect of black carbon particles on two human pathogens, Staphylococcus aureus and Streptococcus pneumoniae, which are both major causes of respiratory diseases and exhibit high levels of resistance to antibiotics.

The investigators reported in the February 28, 2017, online edition of the journal Environmental Microbiology that black carbon drastically changed the development of bacterial biofilms, key aspects of bacterial colonization and survival. Results showed that exposure to black carbon induced structural, compositional, and functional changes in the biofilms of both S. pneumoniae and S. aureus. Black carbon differentially altered the tolerance of biofilms to proteolytic degradation and multiple antibiotics, increasing S. pneumoniae survival against penicillin, the front line treatment of bacterial pneumonia.

In addition, the results revealed that black carbon impacted bacterial colonization in the body. In a mouse nasopharyngeal colonization model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection.

Senior author Dr. Julie Morrissey, associate professor of microbial genetics at the University of Leicester, said, "This work increases our understanding of how air pollution affects human health. It shows that the bacteria, which cause respiratory infections, are affected by air pollution, possibly increasing the risk of infection and the effectiveness of antibiotic treatment of these illnesses. Our research could initiate an entirely new understanding of how air pollution affects human health. It will lead to enhancement of research to understand how air pollution leads to severe respiratory problems and perturbs the environmental cycles essential for life."

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.